ULTRARROGM RESOLTFOON CATMODE RAY TURES

2000 lines per inch resolution short persistence phosphor screen. used for photographic recording and UHR radar

The CBS-Hytron cathode ray tubes, primarily ultra-high resolution read out tubes or monitors, are designed for high precision display and photugraphic use. They are capable of resolving 2000 lines per inch. For a line sean of 4.5 inches in a 5 inch diameter tube, a total of 8000 lines can be achieved.

By the immersion electron optical design, the beat is controlled over its entire post-accelerarion path. Moreover the half-deflection angle of 9.5° insures accurate deffection linearity with suitable yokes*. Defocusing at the edge of the usable sereen is less than 2.5%, which is negligible. but may be corrected to near zero by simple dynamic focusing. It should be realized that sone loss of resolution will oceur ar the extrenes of deflecrion. This loss results from the geometry of a flar face plate and is held to Jess than 15%.

Tubes are available with P 5 or P 11 phosphor. These CR tubes are particularly suitable for photographic recording since the peak wavelengths of the phosphor fall within the blue region of the spectrum (4300 A° and $4600 \mathrm{~A}^{\circ}$ respectively).
Tubes are also available in P16 phosphor. Pio has a shorter persistence of 1 us permitring use of these tubes in flying spot scanner work.
These ultra high resolution cathode ray tubes open up whole new fields of application in strip radar, photo recomaissance, visual indication, photo reproduction, information transfer, industrial and medical closed-circuit TV, and remute data pick up.

* The magnetically shielded focus coil and deflection yokes, available from CBS-Hytron, have been designed far 1000 cps as well as the commercial TV scanning rate, are linear to within $\pm 2.5 \%$, and are made for 20 Kv anode voltage

RESOLUTION YERSUS SCREEN CURRENT

CBS-HYTRON, Danvers, Massachusetts
A Division of Columbia Broadcasting System, Inc.
(1)
ULTRA-HIGH RESOLUTION CATHODE-RAY TUBES

	MECHANICAL DATA							$\begin{gathered} \text { OPTICAL } \\ \text { DATA } \\ \hline \end{gathered}$		ELECTRICAL DATA																	
												$\begin{gathered} \mathrm{CAPACI} \\ (\mathrm{APPI} \end{gathered}$	$\begin{aligned} & \text { ANCES } \\ & 0 \times .) \end{aligned}$		TER*		${ }_{\text {ABS }}^{\text {MAX }}$	Simum	RATING VALUE				TYPIC	AL	ERATI		
$\stackrel{\text { a }}{\stackrel{\text { a }}{\sim}}$						$\begin{aligned} & \text { u } \\ & \stackrel{y}{0} \\ & \varpi \end{aligned}$													$\begin{aligned} & \stackrel{n}{1} \\ & \stackrel{1}{\circ} \\ & \sim \\ & \stackrel{Q}{\bar{O}} \end{aligned}$	$\left\|\begin{array}{c} \dot{d} \\ \mathbf{v} \\ \mathbf{u} \\ 0 \\ \mathbf{O} \\ \mathbf{Y} \\ \mathbf{d} \end{array}\right\|$	$\begin{aligned} & \vec{z} \\ & \mathbf{u} \\ & 0 \\ & 0 \\ & \frac{0}{4} \end{aligned}$			$\begin{aligned} & \dot{x} \\ & \text { z } \\ & \text { u } \\ & \text { U } \\ & \text { U } \end{aligned}$			
7AWP5	$\begin{aligned} & 26.0^{\prime \prime \prime} \\ & \pm .5^{\prime \prime} \end{aligned}$	$\begin{gathered} 7.00^{\prime \prime} \\ \pm .13^{\prime \prime} \end{gathered}$	6.25"	$\begin{gathered} 6.13^{\prime \prime} \\ \pm .13^{\prime \prime} \\ \hline \end{gathered}$	J1-21	B5-57	12D	P. 5	2,000	MAG	19°	$\begin{aligned} & 7 \mu \mid 1 f \\ & \text { MAX. } \end{aligned}$	6 ция MAX.	6.3	$\begin{gathered} .600 \\ \pm 10 \% \end{gathered}$	30	0	-300	+1000	1	20	-45	400	3.5	80-100	50	1.0
7AVP5	$\begin{aligned} & 26.0^{\prime \prime} \\ & \pm .5^{\prime \prime} \end{aligned}$	$\begin{aligned} & 7.00^{\prime \prime} \\ & =.13^{\prime \prime} \\ & \hline \end{aligned}$	6.25"	$\begin{array}{\|c\|c\|} \hline 6.13^{\prime \prime} \\ \pm .13^{\prime \prime} \\ \hline \end{array}$	J1-21	B5.57	120	P. 5	1.500	MAG	19°	$\begin{aligned} & 7 \mu \mu f \\ & M A X . \end{aligned}$	$\begin{aligned} & 6 \mu_{\mu} f \\ & \text { MAX. } \end{aligned}$	6.3	$\begin{array}{\|c\|} \hline .500 \\ \pm 10 \% \\ \hline \end{array}$	30	0	-300	+1000	1	20	-50	400	120	90-120	50	1.0
7AVP16	$\begin{aligned} & 26.0^{\prime \prime} \\ & \pm .5^{\prime \prime} \\ & \hline \end{aligned}$	$\begin{array}{r} 7.00^{\prime \prime} \\ \pm .13^{\prime \prime} \\ \hline \end{array}$	6.25"	$\begin{array}{r} 6.13^{\prime \prime} \\ \pm .13^{\prime \prime} \\ \hline \end{array}$	11-21	B5.57	120	P. 16	500	MAG	19°	$7 \mu \mu \mathrm{f}$ MAX.	$6 \mu \mu \mathrm{f}$ MAX.	6.3	$\begin{gathered} .600 \\ \pm 10 \% \end{gathered}$	30	0	-300	$+1000$	1	20	-50	400	120	90-120	50	1.0
7AVP11	$\begin{aligned} & 26.0^{\prime \prime} \\ & \pm .5^{\prime \prime} \end{aligned}$	$\begin{gathered} 7.00^{\prime \prime \prime} \\ \pm .13^{\prime \prime} \end{gathered}$	6.25"	$\begin{gathered} 6.13^{\prime \prime} \\ \pm .13^{\prime \prime} \\ \hline \end{gathered}$	J1-21	85.57	120	P. 11	1,000	MAG	19°	$\begin{aligned} & 7 \mathrm{muf} \\ & \text { MAX. } \end{aligned}$	$6 \mu \mu \mathrm{f}$ MAX.	6.3	$\begin{array}{r} .500 \\ \pm 10 \% \end{array}$	30	0	-300	+1000		$\begin{array}{\|l\|} \hline 20 \\ 20 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-22 \\ -50 \end{array}$	$\begin{aligned} & 200 \\ & 400 \end{aligned}$	30 120	$\begin{aligned} & 43.50 \\ & 90.120 \end{aligned}$	50 50	1.0

5CRP5	$\begin{aligned} & 19.4^{\prime \prime} \\ & \pm .5^{\prime \prime} \end{aligned}$	$\begin{gathered} 5.00^{\prime \prime \prime} \\ \pm .13^{\prime \prime} \end{gathered}$	4.25"	$\begin{gathered} 5.76^{\prime \prime} \\ \pm .13^{\prime \prime} \end{gathered}$	J1.21	B5-57	12D	P-5	2,000	MAG	19°	$\begin{aligned} & 7 \mu \mu q^{\prime} \\ & \text { MAX. } \end{aligned}$	$6 \mu \mathrm{nf}$ MAX	6.3	$\begin{gathered} 600 \\ =10 \% \end{gathered}$	30	0	-300	$+1000$	1	20	-45	400	3.5	80-100	69	1.0
5CQP5	$\begin{aligned} & 19.4^{\prime \prime \prime} \\ & \pm .5^{\prime \prime} \end{aligned}$	$\begin{aligned} & 5.00^{\prime \prime} \\ & \pm .13^{\prime \prime} \end{aligned}$	4.25"	$\begin{array}{\|c\|} \hline 5.76^{\prime \prime} \\ \pm .13^{\prime \prime} \end{array}$	31-21	B5-57	12D	P-5	1,500	MAG	190	$\begin{aligned} & 7 \mu \mu \mathrm{f} \\ & \text { MAX. } \end{aligned}$	$\begin{aligned} & 6 \text { mur } \\ & \text { MAX. } \end{aligned}$	6.3	$\begin{array}{\|c\|} \hline .600 \\ \pm 10 \% \end{array}$	30	0	-300	+1000	1	20	-50	400	120	90-120	69	1.0
5CQP16	$\begin{aligned} & 19.4^{\prime \prime} \\ & \pm .5^{\prime \prime} \end{aligned}$	$\begin{aligned} & 5.00^{\prime \prime} \\ & \pm .13^{\prime \prime} \end{aligned}$	4.25"	$\begin{gathered} 5.76^{\prime \prime} \\ \pm .13^{\prime \prime} \end{gathered}$	J1-21	B5.57	12D	P. 16	500	MAG	190	$\begin{aligned} & 7 \mu \mu \mathrm{f} \\ & \mathrm{MAX} . \end{aligned}$	$\begin{aligned} & 6 \mu \mu f \\ & \text { MAX. } \end{aligned}$	6.3	$\begin{gathered} 600 \\ \pm .10 \% \end{gathered}$	30	0	-300	+1000	1	20	-50	400	120	90-120	69	1.0
5CQP11	$\begin{aligned} & 19.4^{\prime \prime} \\ & \pm .5^{\prime \prime} \end{aligned}$	$\begin{aligned} & 5.00^{\prime \prime} \\ & \pm .13^{\prime \prime} \end{aligned}$	4.25"	$\begin{aligned} & \hline 5.76^{\prime \prime} \\ & \pm .13^{\prime \prime} \end{aligned}$	J1-21	B5-57	12D	P-11	1,000	MAG	190	$\begin{aligned} & 7 \mu \mu \mathrm{f} \\ & \text { MAX. } \end{aligned}$	$\begin{aligned} & 6 \mu \mu i \\ & \text { MAX. } \end{aligned}$	6.3	$\begin{gathered} .600 \\ \pm 10 \% \end{gathered}$	30	0	-300	+1000	1	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & -22 \\ & -50 \\ & -50 \end{aligned}$	$\begin{aligned} & 200 \\ & 400 \end{aligned}$	$\begin{array}{r} 30 \\ 120 \end{array}$	$\begin{aligned} & 43-50 \\ & 90.120 \end{aligned}$	$\begin{aligned} & 69 \\ & 69 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$

3AWP5	$\begin{aligned} & 19.4^{\prime \prime} \\ & \pm .5^{\prime \prime} \end{aligned}$	$\begin{gathered} 3.00^{\prime \prime} \\ \pm .13^{\prime \prime} \end{gathered}$	2.25"	$\begin{aligned} & 5.74^{\prime \prime} \\ & \pm .13^{\prime \prime} \end{aligned}$	J1-21	B5.57	120	P.5	2,000	MAG	$9.5{ }^{\circ}$	$\begin{aligned} & 7 \mu \mu \mathrm{f} \\ & \mathrm{MAX} . \end{aligned}$	$6 \mu \mathrm{f}$ MAX.	6.3	$\begin{gathered} .600 \\ \pm 10 \% \end{gathered}$	30	0	-300	+1000	1	20	-45	400	3.5	80.100	69	1.0
3AVP5	$\begin{aligned} & 19.4^{\prime \prime} \\ & \pm .5^{\prime \prime} \end{aligned}$	$\begin{gathered} 3.00^{\prime \prime} \\ \pm .13^{\prime \prime} \end{gathered}$	2.25"	$\begin{aligned} & 5.74^{\prime \prime} \\ & \pm .13^{\prime \prime} \end{aligned}$	J1-21	B5-57	120	P-5	1.500	MAG	$9.5{ }^{\circ}$	$\begin{aligned} & 7 \text { maf } \\ & \text { MAX } \end{aligned}$	6 mif MAX.	6.3	$\begin{gathered} .600 \\ \pm 10 \% \end{gathered}$	30	0	-300	+1000	1	20	-50	400	120	90-120	69	1.0
3AVP16	$\begin{aligned} & 19.4^{\prime \prime} \\ & \pm .5^{\prime \prime} \end{aligned}$	$\begin{gathered} 3.00^{\prime \prime} \\ \pm .13^{\prime \prime} \end{gathered}$	2.25"	$\begin{gathered} 5.74^{\prime \prime} \\ \pm .13^{\prime \prime} \end{gathered}$	J1-21	B5-57	120	P. 16	500	MAG	$9.5{ }^{\circ}$	${ }^{\prime \mu \mu}$ Max.	$6 \mu \mu \mathrm{f}$ MAX.	6.3	$\begin{gathered} .600 \\ \pm 10 \% \end{gathered}$	30	0	-300	+1000	1	20	-50	400	120	90-120	69	1.0
3AVP11	$\begin{aligned} & 19.4^{\prime \prime} \\ & \pm .5^{\prime \prime} \end{aligned}$	$\begin{aligned} & 3.00^{\prime \prime} \\ & \pm .13^{\prime \prime} \end{aligned}$	2.25"	$\begin{aligned} & 5.74^{\prime \prime} \\ & \pm .13^{\prime \prime} \end{aligned}$	J1.21	B5-57	120	P.11	1.000	MAG	$9.5{ }^{\circ}$	$\begin{aligned} & 7 \mu_{1 / f} f \\ & \text { MAX. } \end{aligned}$	$6 \mu \mu \mathrm{f}$ MAX	6.3	$\begin{array}{r} 600 \\ \pm 10 \% \end{array}$	30	0	-300	+1000	1	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & -22 \\ & -50 \end{aligned}$	$\begin{aligned} & 200 \\ & 400 \end{aligned}$	30 120	$\begin{aligned} & 43.50 \\ & 90.120 \end{aligned}$	$\begin{aligned} & 69 \\ & 69 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$

[^0]
TRANSFER CHARACTERISTICS

3AVP5

3AWP5

3AVP11

3AVP16

5CQP5

5CRP5

5CQP11

5CQP16

7AVP5

7AWP5

7AVP11

7AVP16

[^0]: BRIGHTNESS:
 Brightness measured according to MIL-E-1D Paf. 4.12.5.2 using a 105 line pattern and a
 RESOLUTION:

 use, however the compressed raster test pattern offers simplicity and is generally understood

 - PEAK HEATER - CATHODE VOLTAGE

 DURING WARM-UP PERIOD OF 15 SECONDS, MAX. ... VOLTS
 AFTER EQUIPMENT WARM-UP PERIOD
 HEATER POSITIVE WITH RESPECT TO CATHODE .. 180 VOLTS

 P11: Fluorescent and Phosphorescent color,
 P16: Fluorescent and Phosphorescentcolor, n ear ultra vialet; Persistence fapprox.), $10^{-6} \mathrm{sec}$.

