

E I M A C Division of Varian S A N C A R L O S C A L I F O R N I A

8158 3CX10,000A1

> LOW-MU POWER TRIODE

The Eimac 8158/3CX10,000A1 is a ceramic and metal power triode intended primarily for use as an audio amplifier or modulator. This tube is also recommended for voltage-regulator applications where high current capability and low tube drop are important. Up to 12 kilowatts of plate power can be dissipated on its air-cooled anode. A water-cooled version, the 3CW20,000A1, is available with a 20 kw dissipation rating.

CHARACTERISTICS

ELECTRICAL

Filament: Thoriated-Tungsten	Min.	Nom.	Max.
Voltage		7.5	V
Current		7.0	104 Å
Amplification Factor			7.0
Interelectrode Capacitances:	0.0		7.0
Grid-Filament	45		57 pF
Output			4.2 pF
Grid-Plate			32
Transconductance (lb = 2.0 amps, Eb = 3000 vo		20,000	umhos
Transconductance (ID = 2.0 anips, ED = 3000 VO	ntoj	20,000	uninos

MECHANICAL

MEGHANIONE
Base
Recommended Socket
Recommended Chimney
Operating Position
Cooling
Maximum Operating Temperatures:
Anode Core
Ceramic-to-Metal Seals
Maximum Dimensions:
Height
Diameter
Net Weight

AUDIO-FREQUENCY AMPLIFIER OR MODULATOR CLASS-AB:

200,000 ohms

MAXIMUM RATING	àS	(P	er	Т	ub	8)				
DC Plate Voltage									7000	volts
DC Plate Current									5.0	amps
Plate Dissipation									12	kW
Grid Dissipation								•	100	watts
*Adjust for zero-: **At max-signal w									back	
Effective grid circ	uit	re	esi	st	an	се	m	ust	not excee	ed .

TYPICAL OPERATION, Two Tubes, Sinusoidal Wave

DC Plate Voltage 7000	7000	volts
DC Grid Voltage*1300	-1300	volts
Zero-Sig DC Plate Current . 1.5	1.5	amps
Max-Sig DC Plate Current . 5.8	7.0	amps
Load Resistance,		
Plate-to-Plate 2460	1720	ohms
Peak AF Grid Driving Voltage		
(Per Tube) 1300	1300	volts
Max-Sig Driving Power 0	0	watts
Max-Sig Plate		
Output Power 24,400	29,100	watts
Total Harmonic Distortion** . 2.9	3.6	percent

AUDIO-FREQUENCY AMPLIFIER OR MODULATOR Class-A

TYPICAL OPERATION

MAXIMUM	RATINGS
---------	---------

DC Plate Voltage 7000 volts	DC Plate Voltage	2500	voits
DC Plate Current See Class-A derating	DC Grid Voltage *	-290	volts
table on Page 3	DC Plate Current	4.0	amps
Plate Dissipation 12,000 watts	Peak AF Grid Driving Voltage	290	volts
•	Load Resistance	2120	ohms
*Adjust to give listed zero-signal DC plate current	Plate Output Power	1800	watts

VOLTAGE REGULATOR SERVICE

Class-A

TYPICAL OPERATION

MAXIMUM RATINGS

DC Plate Voltage 10,000 volts DC Plate Current See Class-A derating

table on Page 3

Plate Dissipation Grid Dissipation

12,000 watts 100 watts

0-5000 volts

0-5 amps

(These values are chosen according to Class-A derating table on Page 3)

DC Plate Voltage (tube drop) . . .

DC Plate Current

Note: "TYPICAL OPERATION" data are obtained by calculation from published characteristic curves. No allowance for circuit losses, either input or output, has been made.

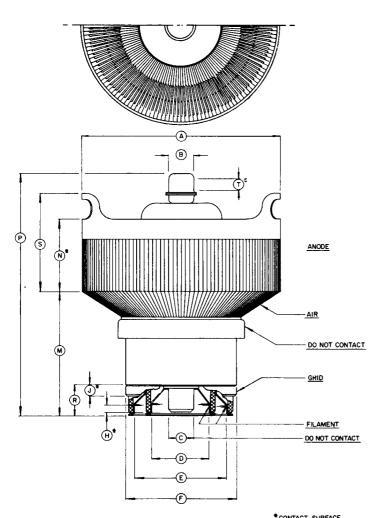
APPLICATION

Cooling — The maximum temperature rating for the external surfaces of the 3CX10, 000A1 is 250°C. Sufficient forced-air cooling must be provided to keep the temperature of the anode core and the temperature of the ceramic-metal seals below 250°C. Tube life is usually prolonged if these areas are maintained at temperatures below this maximum rating. Minimum air-flow requirements to maintain anode-core and seal temperatures below 225°C with an inlet-air temperature of 50°C are tabulated. The use of these air-flow rates through the recommended socket/chimney and tube combination in the baseto-anode direction provides effective cooling of the tube.

Plate**	SEA	A LEVEL	10,000 FEET		
Dissipation	Air Flow	Pressure Drop	Air Flow	Pressure Drop	
(Watts)	(CFM)	(Inches of Water)	(CFM)	(Inches of Water)	
4000	85	0.18	125	0.25	
6000	145	0.38	210	0.55	
8000	215	0.68	315	0.99	
10,000	295	1.08	430	1.60	
12,000	390	1.62	565	2.35	

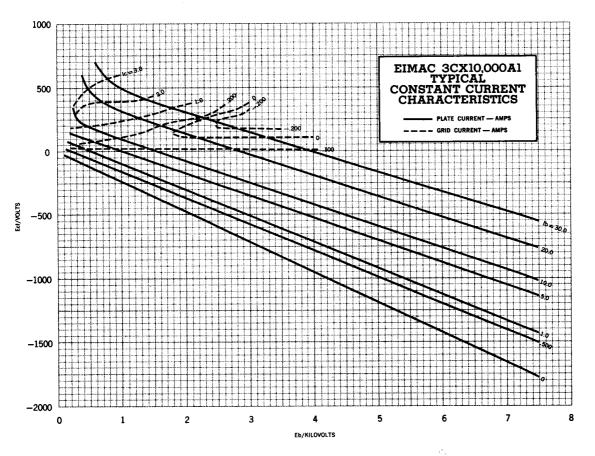
^{**}Since the power dissipated by the filament is about 750 watts and since grid dissipation can, under some circumstances, represent another 100 watts, allowance has been made in preparing this tabulation for an additional 850 watts dissipation.

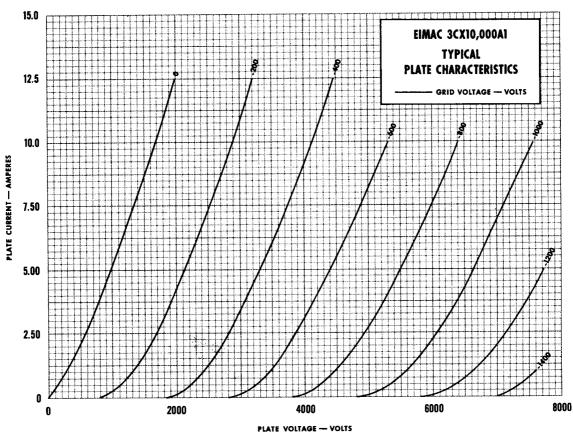
APPLICATION


Voltage-Regulator Service — Maximum DC plate current and voltage are restricted according to the following table.

CLASS-A DERATING TABLE				
DC Plate Voltage (Volts)	Max. DC Plate Current (mA)			
0 - 2400 3000 4000 5000 6000 7000 8000 9000	5000 4000 3000 2000 1500 1000 700 500 350			

Filament Operation—The rated filament voltage for the 3CX10,000A1 is 7.5 volts. Filament voltage, as measured at the socket, should not be allowed to deviate from the rated value by more than plus or minus five percent.


Cooling—The maximum temperature rating for the external surfaces of the 3CX10,000A1 is 250°C. Sufficient forced-air cooling must be provided to maintain the temperature of the ceramic-metal seals and anode core below 250°C. Tube life is usually prolonged if these areas are maintained at temperatures below this maximum rating. Minimum air-flow requirements to maintain anode-core and seal temperatures below 225°C with an inlet-air temperature of 50°C are tabulated. The use of these air-flow rates provides effective cooling of the tube. When air-flow is in the anode-to-base direction, special care must be taken to insure adequate cooling of the filament stem structure. A separate supply of air may have to be directed into the area between the filament contact areas to maintain safe seal temperatures.


Special Applications—If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Tube Marketing, EIMAC, Division of Varian, 301 Industrial Way, San Carlos, Calif., for information and recommendations.

ALL DIMENSIONS IN INCHES

DIMENSION DATA					
REF.	NOM.	MIN.	MAX.		
Α		6.928	7.050		
В		.855	.895		
С		.720	.760		
D		1.896	1.936		
Ε		3 133	3.173		
F		3.792	3.832		
Н		.188			
J		.188			
М		3.950	4.300		
N		2.412	2.788		
Р		8.250	8.750		
R		.986	1.050		
S		3.412	3.788		
T		.375			

