PLATE DISSIPATION GRID DISSIPATION SAN CARLOS CALIFORNIA MEDIUM-MU TRIODE **MODULATOR OSCILLATOR AMPLIFIER** The Eimac 450TL is a medium-mu power triode having a maximum plate dissipation rating of 450 watts, and is intended for use as an amplifier, oscillator and modulator. It can be used at its maximum ratings at frequencies as high as 40-Mc. Cooling of the 450TL is accomplished by radiation from the plate, which operates at a visible red color at maximum dissipation, and by means of air circulation around the envelope. 300 MAX. WATTS 65 MAX. WATTS | R ECTDICAL | | | | CIER | RISTIC | S | | | | | | | | 4 | / | | |--|-------------------|---|---|---|-----------------------|--|--|--|--|--|---------------------------|-----------------|--|---|---|--| | ELECTRICAL | | | | | | | | | | | | | | | + 1 | | | Filament: Thoriated tungsten
Voltage - | | _ | _ | _ | _ | | _ | 7 | 7.5 | volts | | | | 11 | | | | Current - | | _ | · . | - | | | | 12 | 2.0 an | прегез | | | | 64 | 6 | 450TL | | Note: Dual connections for
pasing diagram). Corresponding | | | | | | | | | | | | | | | OK. | | | listribution of filament and R-F c | | | | ., | | , | | , L | | | | | | V | | | | Amplification Factor (Average | | | , - | - | - | - | • | - | - | 18 | | | | \ | | K | | Direct Interelectrode Capacita
Grid-Plate - | inces (/ | -verage | ' - | - | - | | - | - | 4. | 5 μμf | | | | | * | 1 | | Grid-Filament | - | • | - | - | - | - | - | • | | 8 µµf
8 µµf | | | | | | | | Plate-Filament Transconductance (i _b = 500m _c | • F. — | -
4000v | | -
75v | · | - | | 50 | | a μμτ
ιmhos | | | | | | and the | | Frequency for Maximum Rat | - | - | | , | ·, · | | | | • | 0-Mc. | | | | | 1 | | | MECHANICAL | | | | | | | | | | | | | | | 110 | | | Base | - | - | - | - | - | - | Special | | | | | | | | T | | | Basing | - | • | - | - | • | - | -
Vertical, | | | 4AQ | | | | | | | | Mounting
Cooling | - | - | - | - | - | Ra | vernical,
diation a | | | | | | | | 16 | | | Note: Adequate ventilat | | | | ust be i | provided | | | | | | | | | | U | V | | lo not exceed 200°C under opera Socket | | | | o. 211 o | r Nation | al Typ | e No. XN | 150 or | equiv | ralent. | | | | | | | | Recommended Heat Dissipation | | | | | | ,, | | | • | | | | | | | | | 11010 | - , | | - | - | - | - | - | - | - | - | | - | - | - | | ac HR | | Grid -
Note: The grid terminal | of the | 450TI | -
ie now | 560" | in diame | ter ' | To accom | -
moda | -
ło ov | ietina | equin | -
mant | -
design | nd for | | ac HF | | 50TL having .098" diameter gri
emoved from the grid terminal
rawing.) | of the t | nais, an
ube. Th | e smal | ter pin
Il grid t | is provi
terminal, | if us | vith the n
sed, requ | ewer t
ires a | n H | R-4 h | at di | r pin
ssipat | ing co | nnecto | o that i
r. (Sed | it may
e outl | | Maximum Overall Dimensions: | | | | | | | | | _ | | _ | _ | _ | | 12.6 | 25 incl | | Length -
Diameter - | - | - | - | - | - | - | - | - | - | , | - | - | | - | | 25 inch | | Net weight | - | • | - | • | - | - | • | - | | • | - | - | _ | _ | - 1. | 3 pour | | Shipping weight (Average) | - | - | - | | | | | | | | | | | | | A 50 | | | | | | | - | - | - | - | | | • | - | - | - | | 6 pour | | AUDIO FREQUENCY PO
AND MODULATOR |)WER | AMP | LIFI | ER . | - | D-C | -
CAL OPER
Plate Vo
Grid Volt | ltage | | | <u>-</u> | <u>-</u> | 3000
—110 | 4000
—175 | 5000 | Volts | | AND MODULATOR | | | | | - | D-C
D-C
Zero | Plate Vo
Grid Volt
Signal D-0 | ltage
age (a
C Plate | pprox
Curr | .)* -
ent - | <u>-</u> | - | —110
200 | —175
150 | 5000
240
120 | Volts
Volts
Ma. | | AND MODULATOR Class AB, (Sinusoidal wave, two tub MAXIMUM RATINGS | | otherwi | se spec | ified) | - | D-C
D-C
Zero
Max-
Effec | Plate Vo
Grid Volt
-Signal D-
Signal D-
tive Load | Itage
age (a
C Plate
C Plat
I, Plat | pprox
Curre
te Cu | .)* -
ent -
urrent
late | | • | —110
200
770
7700 | -175
150
675
12,800 | 5.
5000
240
120
620
18,500 | Volts
Volts
Ma.
Ma.
Ohms | | AND MODULATOR Class AB, (Sinusoidal wave, two tub MAXIMUM RATINGS D-C PLATE VOLTAGE | es uniess | otherwi | | ified) | - | D-C
D-C
Zero
Max-
Effec
Peak
Max- | Plate Vo
Grid Volt
-Signal D-
Signal D-
tive Load
A-F Grid
Signal Pe | Itage
age (a
C Plate
C Plat
I Plat
I Input
ak Dri | pprox
Curre
te Co
e-to-Pi
Volta
ving | .)* -
ent -
urrent
late
ige (pe
Power | r tube | , - | 110
200
770
7700
325
40 | -175
150
675
12,800
365
33 | 5.000
240
120
620
18,500
430
56 | Volts
Volts
Ma.
Ma.
Ohms
Volts
Watts | | AND MODULATOR Class AB, (Sinusoidal wave, two tub MAXIMUM RATINGS | es unless | otherwis
6000 M | se spec
IAX, VO | ified)
OLTS | - | D-C
Zero
Max-
Effec
Peak
Max-
Max-
Max- | Plate Vo
Grid Volt
-Signal D-G
Signal D-
tive Load
A-F Grid
Signal Pe
Signal No
Signal Pla | Itage
age (a
C Plate
C Plat
I Input
ak Dri
minal
Ite Pov | pprox
Curre
te Co
e-to-P
Volta
ving
Driving
ver C | .)* - ent - urrent late ige (per Power g Power | r tube |) -
rox.) | | -175
150
675
12,800
365 | 5.000
240
120
620
18,500
430
56
28 | Volts
Volts
Ma.
Ma.
Ohms
Volts | | AND MODULATOR Class AB, (Sinusoidal wave, two tub MAXIMUM RATINGS D-C PLATE VOLTAGE MAX-SIGNAL D-C PLATE CURRENT PER TUBE PLATE DISSIPATION, PER TUBE - | es uniess

 | 6000 M
6000 M
450 M | se spec
IAX. VO
IAX. M | cified) OLTS A. (ATTS | • | D-C
D-C
Zero
Max-
Effec
Peak
Max-
Max-
Max-
*Adj | Plate Vo
Grid Volt-
Signal D-
Signal D-
tive Load
A-F Grid
Signal Pe
Signal No
Signal Pla
ust to give | Itage age (a C Plate C Plat Input ak Dri minal te Pove | pprox
Curro
te Cue-to-Pi
Volta
ving Driving
ver C | .)* - urrent late lage (per Power g Power output -signal | r tube |) -
rox.) | | 175
150
675
12,800
365
33
17 | 5.000
240
120
620
18,500
430
56
28 | Volts
Volts
Ma.
Ma.
Ohms
Volts
Watts | | AND MODULATOR Class AB, (Sinusoldal wave, two tub MAXIMUM RATINGS D-C PLATE VOLTAGE MAX-SIGNAL D-C PLATE CURRENT PER TUBE PLATE DISSIPATION, PER TUBE - RADIO FREQUENCY PO | es uniess

 | 6000 M
6000 M
450 M | se spec
IAX. VO
IAX. M | cified) OLTS A. (ATTS | - | D-C
D-C
Zero
Max-
Effec
Peak
Max-
Max-
*Adi | Plate Vo
Grid Volt-
-Signal D-C-
Signal D-C-
tive Load
A-F Grid
Signal Pe
Signal No
Signal Pla
ust to give | Itage age (a C Plate C Plate Input Ak Dri minal Ite Pove statec ATON, | pprox
Curro
te Cue-to-Pi
Volta
ving Driving
ver C | .)* - urrent late lage (per Power g Power output -signal | r tube |) -
rox.) | -110
200
770
7700
325
40
20
1400 | | 5.000
240
120
620
18,500
430
56
28
2200 | Volts
Volts
Ma.
Ohms
Volts
Watts
Watts | | AND MODULATOR Class AB, (Sinusoidal wave, two tub MAXIMUM RATINGS D-C PLATE VOLTAGE MAX-SIGNAL D-C PLATE CURRENT PER TUBE PLATE DISSIPATION, PER TUBE - RADIO FREQUENCY PO | es uniess

 | 6000 M
6000 M
450 M | se spec
IAX. VO
IAX. M | cified) OLTS A. (ATTS | - | D-C
Zero
Max-
Effec
Peak
Max-
Max-
Max-
*Adi
TYPI
D-C
D-C | Plate Vo
Grid Volt-
Signal D-
Signal D-
tive Load
A-F Grid
Signal Pe
Signal No
Signal Pla
ust to give | Itage age (a C Plate C Plate Input ak Dri mina! to Pov e stated ATON, Itage tage | pprox
Curro
te Cue-to-Pi
Volta
ving Driving
ver C | .)* - urrent late lage (per Power g Power output -signal | r tube |) -
rox.) | 110
200
770
7700
325
40
20
1400 | | 5.
5000
-240
120
620
18,500
430
56
28
2200 | Volts
Volts
Ma.
Ma.
Ohms
Volts
Watts
Watts | | AND MODULATOR Class AB, (Sinusoidal wave, two tub MAXIMUM RATINGS DC PLATE VOLTAGE MAX-SIGNAL D-C PLATE CURRENT PER TUBE PLATE DISSIPATION, PER TUBE - RADIO FREQUENCY PO AND OSCILLATOR | es untess | 6000 M
6000 M
450 M | se spec
IAX. VO
IAX. M
IAX. W | cified) OLTS A. 'ATTS ER | - | D-C Zero Max-Effect Peak Max-Max-Max-TYPI D-C D-C D-C D-C | Plate Vo
Grid Volt
-Signal D-
-Signal D-
-Signal D-
-Signal Pe
-Signal Pe
-Signal Pla
-Signal Pla
-Sig | Itage age (a C Plate C Plat Input Input ak Dri minal te Pov stated ATON, Itage trage rrent | pprox
Currite Cue-to-Pi
Voltaving
Driving
ver C
J zero |)* - ent e | r tube |) -
rox.) | -110
200
770
7700
325
40
20
1400 | -175
150
150
365
33
17
1800
-400
-400
450
53
740 | 5.
5000
-240
120
620
18,500
430
56
28
2200 | Volts
Volts
Ma.
Ma.
Ohms
Volts
Watts
Watts
Volts
Ma.
Ma.
Volts | | AND MODULATOR Class AB, (Sinusoidal wave, two tub MAXIMUM RATINGS | es untess | 6000 M
6000 M
450 M | se spec
IAX. VO
IAX. M
IAX. W | cified) OLTS A. 'ATTS ER | - | D-C Zero Max- Effec Peak Max- Max- *Adi TYPI D-C D-C D-C Peak | Plate Vo
Grid Volt
-Signal D-
Signal D-
Signal D-
Signal Pe
Signal Pe
Signal Pe
Signal Plaust to give
CAL OPER
Plate Vol
Grid Vol
Plate Cu
Grid Cu
Grid Cu
Ing Power | Itage age (a C Plate C Plate Input ak Dri minal Ite Pove e statec ATON, Itage rrent rrent renput (appro | pprox
Currite Co
e-to-Pl
Volta
Volta
PER |)* - ent e | r tube |) -
rox.) | -110
200
7700
325
40
20
1400 | -175
150
675
12,800
365
33
17
1800
-400
450
53 | 5000
240
120
620
18,500
430
56
28
2200 | Volts Volts Ma. Ma. Ohms Volts Watts Watts Watts Volts Ma. Ma. Volts Ma. Wats Watts | | AND MODULATOR Class AB, (Sinusoidal wave, two tub MAXIMUM RATINGS D-C PLATE VOLTAGE MAX-SIGNAL D-C PLATE CURRENT PER TUBE PLATE DISSIPATION, PER TUBE - RADIO FREQUENCY PO AND OSCILLATOR Class-C Telegraphy or FM Telephony MAXIMUM RATINGS D-C PLATE VOLTAGE | es unless | 6000 M
600 M
450 M
AMF | SE SPEC
MAX. W
MAX. W
PLIFI
ions, pe | DLTS A. ALTIS ER or tube). | - | D-C D-C Zero Max Effec Peak Max *Adi TYPI D-C D-C D-C Peak Driid Grid | Plate Vo
Grid Volt-
Signal D-
Signal D-
Signal Pe
Signal Pe
Signal No
Signal Pla
Ust to give
CAL OPER
Plate Vol
Grid Vol
Grid Cu
R-F Grid
ing Power
Dissipatic
Power | Itage age {a C Plate C Plate C Plate , Plate Input ask Dri minal Ite Pove statec ATON, Itage rrent Input (appropri on put | pprox
Currite Co
e-to-Pl
Volta
Volta
PER |)* - ent e | r tube |) -
rox.) | 3000 —275
500
640
388
200
1500 | | 5. 5000240 120 620 18,500 430 56 28 2200 5000500 450 540 870 42 | Volts Volts Ma. Ohms Volts Watts Watts Volts Volts Watts Watts Watts Watts Watts Watts Watts | | AND MODULATOR Class AB, (Sinusoidal wave, two tub MAXIMUM RATINGS D-C PLATE VOLTAGE PLATE SIGNAL D-C PLATE CURRENT PER TUBE PLATE DISSIPATION, PER TUBE - RADIO FREQUENCY PO AND OSCILLATOR Class-C Telegraphy or FM Telephony MAXIMUM RATINGS D-C PLATE VOLTAGE D-C PLATE CURRENT | es untess | 6000 M
600 M
450 M
AMF | IAX. WAX. WAX. WAX. WAX. WAX. WAX. WAX. W | cified) OLTS A. VATTS ER or tube). OLTS A. | - | D-C D-C Zero Max Effec Peak Max Max *Adi TYPI D-C D-C D-C Peak Drivi Grid Plate | Plate Vo
Grid Volt
Signal D.4
Signal D.4
Signal D.4
Signal Pe
Signal Pe
Signal Pe
Signal Pe
Signal Pe
Signal Pe
Signal Pe
Signal Volt
CAL OPER
Plate Vol
Grid Vol
Plate Vol
Grid Cu
E.F. Grid
Ing Power
Dissipatio
Power
Dissipatio
Power | Itage age (ac) Plate C Plate Input ak Dri minal te Pove state ATON, tage trent Input (appropri nput on - output | pprox
Currie
Cue-to-Pl
Voltz
Ving I
Drivini
wer C
J zero
PER | .)* - ent - ent - errent late age (pe Power g Powe utput - signal TUBE* | r tuber (app | rox.) | | | 5000 | Volts Ma. Ohms Volts Watts Watts Volts Volts Ma. Volts Ma. Volts Watts Watts Watts Watts Watts Watts | | AND MODULATOR Class AB, (Sinusoidal wave, two tub MAXIMUM RATINGS D-C PLATE VOLTAGE MAX-SIGNAL D-C PLATE CURRENT PER TUBE PLATE DISSIPATION, PER TUBE RADIO FREQUENCY PO AND OSCILLATOR Class-C Telegraphy or FM Telephony MAXIMUM RATINGS D-C PLATE VOLTAGE D-C PLATE CURRENT PLATE DISSIPATION | es unless | 6000 M
600 M
450 M
. AMF | SE SPEC
MAX. W
MAX. W
PLIFI
ions, pe | cified) OLTS A. (ATTS ER or tube). OLTS A. (ATTS | - | D-C D-C Zeroo Max- Effec Peak Max- *Adi TYPI D-C D-C D-C Peak Drivi Grid Plate *The | Plate Vo
Grid Volt-
Signal D-
Signal D-
Signal Pa-
Signal Pa-
Signal Pa-
Signal Pa-
ust to give
CAL OPER
Plate Vol
Grid Vol
R-F Grid
ing Power
Dissipatic
Pa-
Pa-
Dissipatic
Pa-
Pa-
Pa-
Pa-
Pa-
Pa-
Pa-
Pa-
Pa-
Pa- | Itage age (ac) Plate C Plate Input ak Dri minal te Pove state ATON, tage trent Input (appropri nput on - output | pprox
Currie
Cue-to-Pl
Voltz
Ving I
Drivini
wer C
J zero
PER | .)* - ent - ent - errent late age (pe Power g Powe utput - signal TUBE* | r tuber (app | rox.) | | | 5000 | Volts Volts Ma. Ma. Ohms Volts Watts Watts Volts Volts Ma. Volts Ma. Volts Watts Watts Watts Watts Watts Watts | | AND MODULATOR Class AB, (Sinusoidal wave, two tub MAXIMUM RATINGS D-C PLATE VOLTAGE PLATE SIGNAL D-C PLATE CURRENT PER TUBE PLATE DISSIPATION, PER TUBE - RADIO FREQUENCY PO AND OSCILLATOR Class-C Telegraphy or FM Telephony MAXIMUM RATINGS D-C PLATE VOLTAGE D-C PLATE CURRENT PLATE DISSIPATION | OWER | 6000 M
600 M
450 M
AMF
In conditi
6000 M
600 M
450 M | SE SPEC
SE | cified) OLTS A. (ATTS ER or tube). OLTS A. (ATTS (ATTS | - | D-C D-C Zero Max- Effect Peak Max- *Adi TYPI D-C D-C Peak Drivi Gridd Plate *The | Plate Vo
Grid Volt
Signal D.4
Signal D.4
Signal D.4
Signal P.6
Signal P.6
Signal No
Signal Ple
ust to give
CAL OPER
Plate Vo
Grid Vol
Plate Cu
Grid Cu
R.F. Grid
Grid Cu
R.F. Grid
Dissipation
Power Dissipation
Power Of
figures s
uit losses.
CAL OPER | Itage acceptage C Plate Input ak Dri minal Ite Pove state ATON, Itage rrent Input (appro- unput on - unput how acceptage (ATION | pprox
Currie
Ce-to-Pi
Volta
Volta
Volta
Volta
Volta
Volta | photosic signal | r tuber (app | rox.) | —110 200 770 7700 325 40 20 1400 | —175
150
675
12,800
365
33
17
1800
—400
450
53
740
35
13
1800
450
1350
0 and | 5000
-240
-120
-620
18,500
430
56
28
2200
-500
-500
-500
450
54
870
42
15
2250
1800
do not | Volts Volts Ma. Ma. Volts Watts Watts Volts Volts Ma. Volts Ma. Volts Watts Watts Watts Watts Watts Watts Watts | | AND MODULATOR Class AB, (Sinusoidal wave, two tub MAXIMUM RATINGS D-C PLATE VOLTAGE PLATE SIGNAL D-C PLATE CURRENT PER TUBE PLATE DISSIPATION, PER TUBE - RADIO FREQUENCY PO AND OSCILLATOR Class-C Telegraphy or FM Telephony MAXIMUM RATINGS D-C PLATE VOLTAGE D-C PLATE CURRENT PLATE DISSIPATION PLATE DISSIPATION GRID DISSIPATION | OWER | 6000 M
600 M
450 M
AMF
In conditi
6000 M
600 M
450 M | SE SPEC
SE | cified) OLTS A. (ATTS ER or tube). OLTS A. (ATTS (ATTS | - | D-C D-C Zero Maxx Effection Maxx Peak Maxx Maxx *Adi TYPI D-C D-C D-C C D-C C Peak Platte Platte Platte Platte TYPI D-C TYPI D-C D-C TYPI D-C D-C TYPI D-C D-C TYPI D-C D-C TYPI TY | Plate Vo
Grid Volt
Signal D-G
Signal D-G
Signal D-G
Signal P-G
Signal P-G
Signal No
Signal Pla
usi to give
CAL OPER
Plate Cu
Grid Vol
R-F Grid Cu
R-F Grid Cu
R-F Grid Cu
R-F Grid Cu
R-F Grid Signal
Power Dissipation
Power Dissipation
Power Office Power Office
Power Office
Power Office
Power Office Power Office
Power | Itage age (ac) C Plate C Plate Input ak Dri minal Ite Pove stated ATON, tage rrent rent (appro nput on - utput how ac ATION age - rrent | pprox
Currie
Ce-to-Pi
Volta
Volta
Volta
Volta
Volta
Volta | photosic signal | r tube
r (app
plate | current | —110 200 770 7700 7700 325 40 20 1400 3000 —275 500 655 640 38 20 1500 1500 formanc 3000 380 | 4000 450 450 450 450 450 450 450 450 450 | 5000 —240 120 620 18,500 54 870 420 1850 450 1800 do not | Volts Volts Ma. Ma. Ohms Volts Watts Watts Volts Ma. Volts Watts W | | AND MODULATOR Class AB, (Sinusoidal wave, two tub MAXIMUM RATINGS D-C PLATE VOLTAGE MAX-SIGNAL D-C PLATE CURRENT PER TUBE PLATE DISSIPATION, PER TUBE - RADIO FREQUENCY PO AND OSCILLATOR Class-C Telegraphy or FM Telephony of MAXIMUM RATINGS D-C PLATE VOLTAGE PLATE DISSIPATION PRATE DISSIPATION PRATE MODULATED R AMPLIFIER | OWER | 6000 M
450 M
450 M
AMF
on conditi
6000 M
450 M
450 M | SE SPEC
SE | cified) OLTS A. (ATTS ER or tube). OLTS A. (ATTS (ATTS | | D-C D-C Maxx-Y-Adj TYPI D-C D-C D-C Grid Flate F | Plate Vo
Grid Volt
Signal D.
Signal D.
Signal D.
Signal Pa
William Voltage Para
Signal Pa
William Voltage Para
CAL OPER
Plate Vol
Grid Cu
Grid | Itage age (ac) Plate (C) P | pprox
Currie
Ce-to-Pi
Volta
Volta
Volta
Volta
Volta
Volta | photosic signal | r tuber (app | current | | 4000 450 450 1350 e and 4000 340 —250 | 5000 —240 120 620 18,500 54 870 450 450 1800 do not | Volts Volts Ma. Ma. Volts Watts Watts Watts Volts Watts Volts Volts Volts Volts Volts Volts Volts Volts Volts | | AND MODULATOR Class AB, (Sinusoidal wave, two tub MAXIMUM RATINGS DC PLATE VOLTAGE - MAX.SIGNAL D-C PLATE CURRENT PER TUBE - PLATE DISSIPATION, PER TUBE - RADIO FREQUENCY PO AND OSCILLATOR Class-C Telegraphy or FM Telephony MAXIMUM RATINGS D-C PLATE VOLTAGE PLATE DISSIPATION PLATE MODULATED R AMPLIFIER Class-C Telephony (Carrier conditions) | OWER | 6000 M
450 M
450 M
AMF
on conditi
6000 M
450 M
450 M | SE SPEC
SE | cified) OLTS A. (ATTS ER or tube). OLTS A. (ATTS (ATTS | - | D-C D-C D-C D-C D-C Peak Max- *Adi TYPI D-C D-C Peak Plate Plate TYPI TYPI TYPI TO-C Tota Fixed Grid Grid Grid Grid Fixed Grid | Plate Vo Grid Volt Visignal D. Signal D. Signal D. Signal D. Signal D. Signal Plate Voltage Vo | ltage ace (a C Plaire | pprox Currice Currice Control Voltage Voltage PER Voltage Volt | not interest in the second of | r tube
r (app
plate | rox.) | | -175
150
675
12,800
365
33
17
1800
4000
450
53
740
355
13
1800
450
1350
e and | 5000 —240 —240 —240 —240 —240 —250 —250 —500 —500 —500 —250 —250 —25 | Volts Volts Ma. Ma. Ohms Volts Watts Watts Volts Watts Volts Watts Watts Watts Watts Watts Watts Watts Watts Watts Volts Watts Volts | | AND MODULATOR Class AB, (Sinusoidal wave, two tub MAXIMUM RATINGS DC PLATE VOLTAGE MAX-SIGNAL D-C PLATE CURRENT PER TUBE PLATE DISSIPATION, PER TUBE - RADIO FREQUENCY PO AND OSCILLATOR Class-C Telegraphy or FM Telephony MAXIMUM RATINGS D-C PLATE VOLTAGE PLATE DISSIPATION PLATE MODULATED R AMPLIFIER Class-C Telephony (Carrier conditions) | OWER | 6000 M
450 M
450 M
AMF
on conditi
6000 M
450 M
450 M | SE SPEC
SE | cified) OLTS A. (ATTS ER or tube). OLTS A. (ATTS (ATTS | - | D-C Zero Maxx-Maxx-Maxx-Maxx-Maxx-Maxx-Maxx-Maxx | Plate Vo
Grid Volt
Signal D.
Signal D.
Signal D.
Signal Pe
Signal Pe
Signal Pe
Signal No
Signal Plate
Ust to give
CAL OPER
Plate Vol
Grid Cu
E.R.F Grid
Ing Power
Dissipatic
Plate Volt
Grid Cu
E.R.F Grid
Dissipatic
Power Offigures S
with losses.
CAL OPER
Plate Volt
Ingues S
With losses.
CAL OPER
Plate Volt
Belas Volt
Belas Volt
Belas Volt
Resistor
Grid Cu
R.F. Grid
Grid Grid
Grid
Grid Cu
R.F. Grid
Grid Grid
Grid
Grid Cu
R.F. Grid
Grid Cu
R.F. Grid
Grid
Grid
Grid
Grid
Grid
Grid
Grid | ltage age (a C Plate | pprox Currice Currice Control Voltage Voltage PER Voltage Volt | not interest in the second of | r tube
r (app
plate | rox.) | —110 200 770 7700 7700 325 40 20 1400 3000 —275 500 450 450 1500 1500 formanc 380 —400 —200 5000 5000 | 175
1500
675
12,800
335
33
17
1800
400
450
450
450
135
135
1800
450
450
450
450
450
450
450
450
450
4 | 5000 —240 —240 430 546 28 2200 —5000 —500 450 450 450 1800 do not 4500 345 —550 —2750 750 | Volts Volts Ma. Ohms Volts Watts Watts Volts Ma. Volts Watts Watts Watts Watts Watts Volts Watts Volts Watts Volts Watts Volts Volts Ohms | | AND MODULATOR Class AB, (Sinusoidal wave, two tub MAXIMUM RATINGS D-C PLATE VOLTAGE MAX-SIGNAL D-C PLATE CURRENT PER TUBE PLATE DISSIPATION, PER TUBE - RADIO FREQUENCY PO AND OSCILLATOR Class-C Telegraphy or FM Telephony of MAXIMUM RATINGS D-C PLATE VOLTAGE PLATE DISSIPATION PRATE DISSIPATION PRATE MODULATED R AMPLIFIER | OWER | 6000 M
600 M
450 M
AMF
in conditi
6000 M
600 M
600 M
600 M
600 M | SE SPEC
SE | cified) DLTS A. (ATTS ER or tube). DLTS A. (ATTS (ATTS (ATTS | | D-C Zero Maxx-Effect Max-Maxx-Max-Max-Max-Max-Max-Max-Max-Max | Plate Vo
Grid Volt
Signal D.
Signal D.
Signal D.
Signal Pe
Signal Pe
Signal No
Signal Ple
ust to give
CAL OPER
Plate Vol
Grid Vol
Plate Vol
Grid Cu
E.F. Grid
ing Power
Dissipatio
Power Of
Guy
Description
Dissipatio
Power Of
Guy
Description
Description
Description
Description
Description
Description
Description
Description
Description
Grid Cu
Blas Vol
Blas Vol
Blas Vol
Resistor
Grid Cu
Resistor
Grid Cu
Resistor | Itage age (a CP Plate | pprox Currice Currice Control Voltage Voltage PER Voltage Volt | not interest in the second of | r tube
r (app
plate | rox.) | | -175
1500
675
12,800
333
177
1800
-4000
-450
450
1350
e and
-4000
-250
7000
-250
7790
29 | 5000 —240 120 620 18,500 430 54 870 422 15 2250 450 1800 do not 4500 345 —550 —275 7500 34 850 31 11 | Volts Volts Ma. Ma. Ohms Volts Watts Watts Volts Watts Watts Watts Watts Watts Watts Watts Watts Volts Watts | | AND MODULATOR Class AB, (Sinusoidal wave, two tub MAXIMUM RATINGS DC PLATE VOLTAGE MAX-SIGNAL D-C PLATE CURRENT PER TUBE PLATE DISSIPATION, PER TUBE - RADIO FREQUENCY PO AND OSCILLATOR Class-C Telegraphy or FM Telephony MAXIMUM RATINGS D-C PLATE VOLTAGE PLATE DISSIPATION PLATE DISSIPATION PRID DISSIPATION PRID DISSIPATION PRID DISSIPATION PLATE MODULATED R AMPLIFIER Class-C Telephony (Carrier conditions MAXIMUM RATINGS | OWER | 6000 M
600 M
450 M
AMF
In conditi
6000 M
600 M
650 M
650 M | IAX. WAX. WAX. WAX. WAX. WAX. WAX. WAX. W | DLTS A. (ATTS ER or tube). DLTS A. (ATTS A. (ATTS A. (ATTS (ATTS ATTS (ATTS ATTS ATTS (ATTS | - | D-C Zero Maxx- Max- Adi D-C D-C D-C D-C D-C D-C D-C Gridd TIP-C D-C Tota TYP-D-C D-C D-C Gridd C-C D-C C-C D-C Gridd Platte T-Fixer Gridd Platte T-Fixer Pla | Plate Vo Grid Volt Signal D. Signal D. Signal D. Signal Plate Volt Signal Plate Volt Signal Plate Volt Grid Volt Plate Volt Grid Volt Plate Volt Grid Cu | ltage ace (a ce | pprox Currice Currice Control Voltage Voltage PER Voltage Volt | not interest in the second of | r tube
r (app
plate | rox.) | | -175
150
675
12,800
365
33
17
1800
450
450
450
35
13
1800
450
1350
e and
4000
340
-500
7000
7000
27 | 5000 —240 120 620 18,500 540 54 870 650 650 650 650 650 650 650 650 650 65 | Volts Volts Ma. Ma. Ohms Volts Watts | *The figures are for one tube operating at maximum plate dissipation as a plate modulated Class-C amplifier. The output figures do not allow for circuit losses. ## APPLICATION ### **MECHANICAL** Mounting—The 450TL must be mounted vertically, base up or base down. Flexible connecting straps should be provided from the grid and plate terminals to the external grid and plate circuits. The tube must be protected from severe vibration and shock. Cooling—Provision should be made for ample circulation of air around the 450TL. In the event that the design of the equipment restricts natural circulation, the use of a small fan or centrifugal blower to provide additional cooling for the tube will aid in obtaining maximum tube life. Special heat-dissipating connectors (Eimac HR-8) are available for use on the plate and grid terminals. These connectors help to prolong tube life by reducing the temperature of the seals. #### **ELECTRICAL** Filament Voltage—For maximum tube life the filament voltage, as measured directly at the filament pins, should be the rated value of 7.5 volts. Unavoidable variations in filament voltage must be kept within the range from 7.03 to 7.88 volts. All four socket terminals should be used, putting two in parallel for each filament connection. Bias Voltage—Although there is no maximum limit on the bias voltage which may be used on the 450TL, there is little advantage in using bias voltages in excess of those given under "Typical Operation," except in certain very specialized applications. Where bias is obtained by a grid leak, suitable protective means must be provided to prevent excessive plate dissipation in the event of loss of excitation. Grid Dissipation—The power dissipated by the grid of the 450TL must not exceed 65 watts. Grid dissipation may be calculated from the following expression: $$\begin{split} P_g = & e_{cmp} I_c \\ \text{where } P_g = & \text{Grid dissipation} \\ & e_{cmp} = & \text{Peak positive grid voltage, and} \\ & I_c = & D\text{-}c \text{ grid current.} \end{split}$$ e_{cmp} may be measured by means of a suitable peak voltmeter connected between filament and grid. In equipment in which the plate loading varies widely, such as oscillators used for radio-frequency heating, care should be taken to make certain that the grid dissipation does not exceed the maximum rating under any conditions of loading. Plate Voltage—Except in very special applications, the plate supply voltage for the 450TL should not exceed 6000 volts. In most cases there is little advantage in using plate-supply voltages higher than those given under "Typical Operation" for the power output desired. Plate Dissipation—Under normal operating conditions, the power dissipated by the plate of the 450TL should not be allowed to exceed 450 watts. At this dissipation the brightness temperature of the plate will appear a red-orange in color. The value of this color is somewhat affected by light from the filament as well as from external sources. Plate dissipation in excess of the maximum rating is permissible for short periods of time, such as during tuning procedures. NOTE:—The grid terminal on the new 450TH and TL type tube is now .563" in diameter. To accommodate existing equipment which uses the 450TH or TL tubes with the old style .098" grid terminal, an adaptor pin is provided. This adaptor pin, if not needed, may be removed by unscrewing. # DRIVING POWER vs. POWER OUTPUT The three charts on this page show the relationship of plate efficiency, power output and grid driving power at plate voltages of 3000, 4000, and 5000 volts. These charts show combined grid and bias losses only. The driving power and power output figures do not include circuit losses. The plate dissipation in watts is indicated by Pp. Points A, B, and C are identical to the typical Class C operating conditions shown on the first page under 3000, 4000, and 5000 volts respectively. POWER OUTPUT-WATTS