WATER COOLED INDUSTRIAL R.F. POWER TRIODE WITH INTEGRAL HELICAL COOLER

QUICK REFERENCE DATA				
Industrial R.F. oscillator class C				
Freq. (MHz)	Three phase			
	V _a (kV)	W _o (kW)		
30	12 10 8	29.0 23.3 17.9		

HEATING: direct; filament thoriated tungsten

Filament voltage	v_f	=	8.0	v + 5%
Filament current	I_f	=		
Cold filament resistance	R_f	=	0.008	Ω

The filament current must never exceed a peak value of 210 A instantaneously at any time during the initial energizing schedule

CAPACITANCES

Anode to all other elements except grid	C_a	=	0.4	pF
Grid to all other elements except anode	C_{g}	=	37	pF
Anode to grid	Cag	=	3 0	pF
TYPICAL CHARACTERISTICS				
Anode voltage	v_a	=	12	kV
Anode current	I_a	=	2	A
Amplification factor	μ	=	34	
Mutual conductance	S	=	20	mA/V

7Z2 8647

June 1965

TEMPERATURE LIMITS (Absolute limits)

Water inlet temperature

 $t_i = max. 50$ °C

Temperature off all seals

= max. 220 °C

WATER COOLING CHARACTERISTICS

W _a (kW)	t _i	qmin	p _i
	(°C)	(l/min)	(atm.)
10	20	4.2	0.08
	50	8.4	0.27
15	20	6.5	0.16
	50	13.0	0.50
20	20	9.3	0.30
	50	18.6	1.0

At water inlet temperatures between 20 $^{\rm o}C$ and 50 $^{\rm o}C$ the required quantity of water can be found by linear interpolation

Generally a low velocity air flow to the seals is required

The rounded side of the grid connector should face the anode. To ensure a uniform R.F. current distribution in the grid seal at frequencies higher than 4 MHz, the grid lead should be connected as shown at right. $722\ 3556$

2

MECHANICAL DATA (continued)

Filament connectors with cable 40662

Grid connector

40663

Net weight

5.2 kg

Dimensions in mm

Mounting position: vertical with anode down

R.F. CLASS C OSCILLATOR FOR INDUSTRIAL USE with anode voltage from three-phase half-wave rectifier without filter

LIMITING VALUES (Absolute limits)

Frequency		f		up to	30	MHz
Anode voltage		va	. =	max.	13	kV
Anode current		I_a	=	max.	4.8	Α
Anode dissipation		W,	a =	max.	20	kW
Anode input power		W	ia =	max.	60	kW
Negative grid voltage		-V _g	; =	max.	1500	V
Grid current		$I_{\mathbf{g}}$	=	max.	0.8	A
Grid circuit resistance		R	; =	max.	10	kΩ
OPERATING CONDITIONS						
Frequency	f	=	30	30	30	MHz
Transformer voltage	v_{tr}	=	8.9	7.4	6.0	kV
Anode voltage	v_a	=	12	10	8	kV
Anode current, loaded	Ia	=	3.2	3.2	3.2	A
Anode current, unloaded	I_a	=	0.52	0.50	0.48	A
Grid current, loaded	$I_{\mathbf{g}}$	=	0.50	0.50	0.50	A
Grid current, unloaded	I_g	=	0.74	0.77	0.80	A
Grid resistor	$R_{\mathbf{g}}$	=	2.0	1.6	1.1	$\mathbf{k}\Omega$
Load resistance	$R_{a_{\sim}}$	=	1800	1450	1100	Ω
Feedback ratio under loaded conditions	$v_{g_{\sim}}/v_{a_{\sim}}$	=	16	17	19	%
Anode input power	w_{ia}	=	38.4	32.0	25.6	kW
Anode dissipation	w_a	=	9.4	8.7	7.7	kW
Output power	w_{o}	=	29.0	23.3	17.9	kW
Efficiency	η	=	75.5	72.5	70	%
Output power in the load	$\mathbf{w}_{\!\!\ell}$	=	25	20	15.5	kW ¹)

¹⁾ Useful power in the load measured in a circuit having an efficiency of 90%

June 1965