VALVE BLECTRONIC CV 1529

Specification MOSA/CV1529 Issue 3. Dated 12.3.53.	SECU Specification	RETY Valve
To be read in conjunction with K.1001	unclassified	unclassified

Indicates a change

TYPE OF VALVE - Cathode	MARKING See K1001/4					
TYPE OF DEFIECTION - Electro for bot asymmet Voltage	<u>Base</u> B.12.D					
BUIB - International conductions	CONNECT IONS					
SCREEN - BBN_38				Pin	Electrode	
PROTOTYPE - VCR.523	,			1 2	G C	
RATING			Note	2 3 4 5 6	H H A1	
Heater Voltage Heater Current Max. Final Anode Voltage	(V) (A) (kV)	4.0 1.0 5.0		6 7 8	A2 Internal Conductive Coating (See Note D) Y2	
I-plate Sensitivity	(mm/V)	357 Ve 3		9	12	
I-plate Sensitivity TTPICAL OPERATING CONDITIONS	(1200√ V) <u>S</u>	357 Va3 780 Va3		10 11 12	A3 X1 Y1	
Final Anode Voltage Second Anode Voltage First Anode Voltage	(kV) (V)	3.0 500 2.0		DIMENSIONS See Drawing on Page 3.		

NOTES

- A. The tube shall be adequately free from microphony.
- B. When viewing the screen with the tube positioned such that the base spigot is uppermost, a positive voltage applied to terminal X1 shall deflect the spot to the left and a positive voltage applied to the terminal X1 shall deflect the spot upwards.
- 6. The internal conductive coating shall be of such dimensions that it functions effectively but does not obscure the required useful screen area.
- D. The tube will normally be operated with A3 and the conductive coating tied, and if a manufacturer so desires, one or both of these electrodes may be strapped internally, with the connection omitted from contacts marked:- "Internal conductive coating".

	C		152	_ •		3 4 3 9 4	TESTS	Page 2			
1				To be post		a in saci	tion to those applicable	Lim		No.	
ļ			10.			I	1000	Min.	Max	Tested	Note
		VÞ	Va3 (kV)	Va 2 (∀)	Va1 (kV)	∀g (♥)					
			De	flection	voltage	s shall b	e applied asymmetrically	in al	l ca	908.	
							INTER-RIECTRODE CAPACITANCES (pF)				
	a						1. Each X or Y plate to all other electrodes.	-	25	5%(10)	
	_						2. Grid to all other electrodes.	-	25	5%(10)	
							3. One X to one Y plate.	-	6	5%(10)	
	b	4.0	0	0	0	0	Ih (A)	0.8	1.3	100%	
→	G	4.0	3.0	Adjust for optimum focus	2.0	Adjust to cut off	-Vg (♥)	40	80	100%	
→	đ	4.0 3.0 ditto 2.0 - Adjust Vg to give a light output				- output	(1) Vg (V) (2) Change in value	1	-		
		of 0.252 orthochromatic candela on a closed raster					of Vg from test (c) (V)	-	26	100%	
→	6	4.0 THERT	3.0	ditto . With a			(1) Line width (mm)	-	1.0	100%	
^		base line Y di: The the GRID posit ampl: obta: nomin and	of 10 lengt rectice when tree tively itude in al varecurr	. With a Key's (not he of 70 mms successidth to be of the transmission of the tra	minal) a in the sively. be measu race. be pul -off wi the val 2), the lise dur g 100 \(\mu\)	and a e X and red at sed th ue	(2) Va2 (V)	400	600		
+	•	4.0	K.1	Any con- venient value mmended m 001/54.3.	2	-8 0	GRID INSULATION (1) Leakage Current (μΔ) (2) Increase in voltmeter reading	-	ľ	100% 100%	
→	g	4.0	exce	0 K.1001/5A pt that ti age shall	he test		HRATER-CATHOLE INSULATION Leakage current (µA)	-	200		

	Test Gonditions						Test	Lin	its	No.	
								Min.	Max	tested	Note
		Vb (V)	Va3 (k V)	Va2 (V)	Vat (V)	∀g (∀)					
->-	h	4.0	3.0	Adjust for optimum focus	2.0	Any con- venient value	DRFLECTION SENSITIVITIES (1) X - plate (mm/V) (2) Y - plate (mm/V)	300 Va3 660 Va3	415 Va3 900 Va3	100%(10) 100%(10)	
*	j	4.0	3.0	ditto	2.0	ditto	Deviation of spot from centre of screen (mm)	1	6	100%	
→	k	4.0	3.0	ditto	2.0	ditto	useful screen area				
		Deflections to cover stated circle centred on centre of screen					Diameter (mm)	70	-	100%	
*	1	1 4.0 3.0 ditto 2.0 ditto A screen area of at least 70 mm x 45 mm to be scanned.					TRAPSZOIDAL DISTORTIONS 1. Angles between adjacent sides. 2. Angles between opposite sides.	85° 175°		100% 100%	
->	R	4.0	3.0	ditto	2.0	ditto	1. Orientation of X axis of deflection relative to 00' on drawing. 2. Angle between X and Y aros of deflection.	80 [©] 85 [°]		100%	