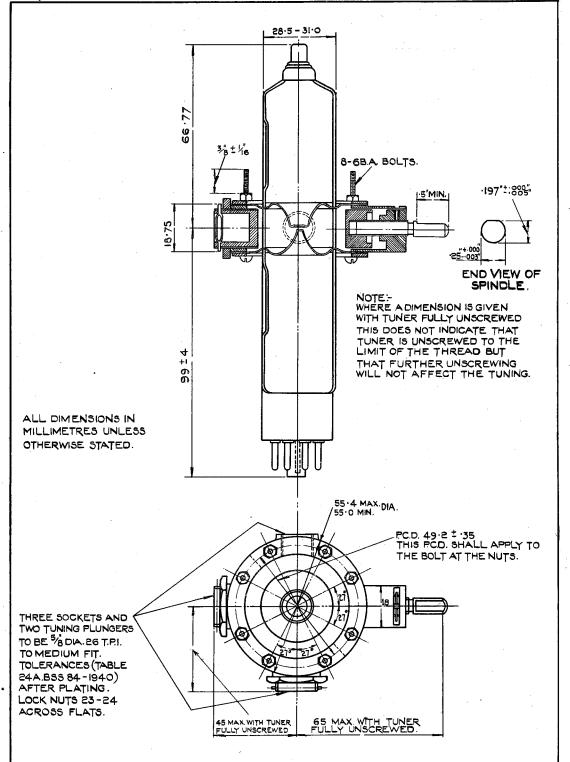
Specification MAP/CV67/Issue 5. Dated 14.1.49	SECU	RITY
To be read in conjunction with K1001 ignoring clauses: - 5.2.2., 5.8, 7.2.	Specification RESTRICTED	<u>Valve</u> UNCLASSIFIED

Tenorate organous years,									
→ Indicates a change									
TYPE OF VAIWE - Velocity Modulated Oscillator CATHODE - Indirectly heated ENVELOPE - Glass-unmetallised					MARKING See K1001/4 PACKING See K1005				
RATING	Note	Base I.O.							
Heater Voltage Heater Current (max.) Min. Oscillation Frequency Max. Oscillation Frequency Max. Resonator Dissipation AVERAGE WORKING CONDITIONS Resonator Voltage Reflector Voltage Grid Voltage Mean resonator dissipation Min. Power Output	(V) (A) (Mc/s) (Mc/s) (Mc/s) (W) (kV) (V) (V) (W) (mW)	4.0 1.60 3226 3370 10.0 1.2 -360 0 10.0	E	resonat metal f:	Gr He No No No No No No Top K1001/	CAP /AI/5.2.			

NOTES

- A: All internal and external copper parts shall be carefully cleaned with acid.


 The resonator shall be plated first with copper and then with silver.
- B: The valve shall be processed to withstand a maximum anode voltage of not less than 3.0kV. positive with respect to grid and reflector strapped.
- C: The terms anode and resonator are synonymous.
- D: In operation the temperature of the resonator must not exceed 100°C., and if the mounting gives insufficient cooling by conduction then artificial cooling must be used.
- E: The valve has been designed to operate at zero grid voltage.
- F: Variation of resonator and reflector voltages to cover the ranges shown in test clause (c) should be provided in equipments.

To be performed in addition to those applicable in K1001

m						Limits		No.		
	Test Conditions Test			Min.	Max.	Tested	Notes			
	۷h	Vg	Va	Vr						
a		T	001/5.3		H-C Leakage Current (-	50	100%	
Ъ	4.0	0	0	. 0	Ih	(A)		1.6	100%	
C	Freque tion	power ency varie	varied r input of osci ed by me	10W. illa- eans of	2. Va over range (kV)	3226 to 1.0 -300	0 3370 1•5 -420	100% 100% 100%	
đ	to giv	ve fi	varied uners ad requency on of 3,	ljusted of	1. Power output at 3,300 Mc/s. (2. Power output over full range of fine tuner, Va and Vr bein		200		100%	2
	when the co	fine entre rse.	tuner i	is at		mw)	100	-	100%	
	Va and	rV f	adjuste	d for						
e ,`	varied tuner loaded max.	ency d by only d res outpu	varied of osci means of values of values of the control of the con	illation of fine oe y of or ner test	Fine tuner range (Mo	√s)	46		1% (1)	2
f			varied condit st (d)		Power output at 3,300 Mc/s. (mW)	100	•	100%	2
g	4.0 Other test (c ond	varied litions		Frequency drift to be measured from the tim of application of ele trode voltages to the cold tube to the time when a steady state has been reached.	e c-				2 and 3
					Positive drift (Mo Negative drift (Mo	/s) ;/s)	-	0 5.0		
					·				. .	

NOTES

- 1: The symbol Vr is used to designate the reflector voltage.
 The symbol Va is used to designate the resonator voltage.
- 2: For test clauses (d), (e), (f) and (g), Va and Vr must be within the limits given in test clause (c2) and (c3).
- 3: Before bulk delivery commences, the results on 25 valves shall be submitted to M.O.S., R.D.C.8. If these are satisfactory, the manufacturer will not be required to carry out the test on further valves.

