

Environmental Capabilities

Military specifications: Designed to meet MIL-E-5400 (DOD) and MIL-E-16400
(NAVY).
Operating temperature $\dots -54$ degrees C to $+85$
degrees C at baseplate
Storage temperature $\dots -54$ degrees C to $+95$
degrees C
Altitude 70,000 feet maximum
Humidity
Vibration 10 g to 2000 Hz
Shock

Mechanical Specifications

M-712

*Can be provided with aircooled heat sink

The Model 712 Power Supply is designed for shipboard, airborne, and ground-based military use. It drives many of Litton's pulsed helix traveling wave tubes at duty cycles up to 10%. It has been optimized for radar TWT's which possess the following characteristics:

- Power output of up to 4 kW peak
- GHz plus bandwidths within the range of 1 to 18 GHz
- Low noise radar applications
- Gains from 35 to 60 dB

State-of-the-art components—IC's, MOS FET's, and ferrite magnetics—provide a very fast modulator and enhance overall performance.

The power supply is usually supplied fully integrated with an associated TWT on a single conduction-cooled baseplate, thereby forming a self-contained pulsed microwave amplifier. It is also available in an air cooled version.

Both power supply and associated TWT are designed for complete control from a remote location. Monitoring outputs provided include control status signals, TWT voltage and current signals, and a number of diagnostic test point signals.

An accompanying manual provides complete instructions for installing, operating and maintaining the amplifier.

Automatic Fault Protection

TWT Power is automatically removed to prevent damage from:

- Cathode over and under voltage
- Excess average helix current
- TWT arcing (Excess peak cathode current)
- Over duty (Excess average cathode current)
- Overheated power supply
- Power converter over current
- TWT over temperature

Monitoring Signals

- Beam current 1 volt/ampere, 1M-ohm load
- Cathode voltage: 1 volt/kilovolt, 10M-ohm load
- Helix current: 1 volt/ampere into 1 M-ohm load
- Fault and status signals: Each of these is TTL compatible (See pin listing for Connector J2)
- Power supply internal fault
- Excessive helix current
- Power supply over temperature

Specifications

Input

Video input pulse to modulator:

- A pulse with a rise and fall time less than 30 ns to turn the TWT on and off
- Standard input, differential TTL:
- Pulse width: 300 ns minimum, 100 microsecs maximum
- The power supply is capable of being synchronized between 74 KHz to 110 KHz in order to stabilize any switching interference in the RF output

Output of TWT

RF power, frequency and gain are determined by the TWT used.

Maximum duty cycle 10%
Maximum pulse width 100 microseconds
Pulse repetition frequency 165 kHz maximum
Pulse rate jitter Less than 2 ns
RF rise time
RF fall time
Delay from leading edge of input video pulse
to full RF out 200 ns
Delay from trailing edge of input video pulse
to full RF cutoff 250 ns
Maximum spurious FM 70 dB below carrier
PRF synchronized and measured in a 100 Hz
bandwidth

Output of Power Supply

Maximum output power	
Helix voltage	10.8 kV to 12.7 kV
	(1.9 kV adjustment range)

2 Collectors:

Coll $1 = 66 \pm 5\%$ wrt cathode Coll $2 = 41.6 \pm 5\%$ wrt cathode

Helix current	500 mA maximum
Cathode current	2.1A maximum
Grid voltage	+ 165 to 240 V
Grid bias	– 200 V. maximum
Grid current	325 mA maximum
Modulator output rise time	40 ns maximum
Modulator output fall time	50 ns maximum
Acquisition time	. 200 ns maximum
(neg	lecting TWT delay)
Heater voltage	c plus or minus 1%
Heater current	2.5 A maximum

High-Voltage Connections to TWT, Connector J1 (Reynolds 178-8528)

Pin 1	Cathode	
Pin 2	Collector 1	
Pin 3	Grid	
Pin 4	Collector 2	
Pin 5	Filament	
Pin 6	High Voltage Interlock	

Prime Power Input, Connector J3

Pin A, B and C	AC power, 180 to 220 v, 400 Hz, line to line, 3-phase per MIL-STD-704B				
Pin D	No connection				
Pin E Ground					
Power consumpt	ion				

Power consul	mption		 	•	•	 •	•	190	00	w m	aximum
Power factor		 •	 							. 0.9	lagging

Control Input, Status Output	, and Monitoring Signals,	Connector J2 (MS 27484 T16F26S)
-------------------------------------	---------------------------	---------------------------------

	Description		Compatibility
Pin A	Modulator (L)	Input	Differential TTL (SN 55115)
Pin B	Modulator (H)	Input	Differential TTL (SN 55115)
Pin C	Shield Return (Modulator)	Input	
Pin D	Sync (L)	Input	Differential TTL (SN 55115)
Pin E	Sync (H)	Input	Differential TTL (SN 55115)
Pin F	Shield Return (Sync)	Input	
Pin H	STANDBY/OPERATE COMMAND Standby Operate	Input	Logic "0" Stdby, 54 TTL Logic "1" On, 54 TTL
Pin G	Spare		
Pin J	Reset (L)	Input	Differential TTL, (SN 55115)
Pin K	Reset (H)	Input	Differential TTL, (SN 55115)
Pin L	Modulator Inhibit	Input	Logic "0" to Inhibit, 54 LSTTL
Pin M	Beam Pulse Over Current	Output	Logic "0" to Fault, 54 TTL (Open Coll)
Pin N	Helix Pulse Over Current	Output	Logic "0" to Fault, 54 TTL (Open Coll)
Pin P	Helix Avg Over Current	Output	Logic "0" to Fault, 54 TTL (Open Coll)
Pin R	P.S. Sync Status	Output	Logic "0" for Internal, 54 TTL (Open Coll)
Pin S	Cathode Under Voltage	Output	Logic "0" Fault, 54 TTL (Open Coll)
Pin T	Cathode Over Voltage	Output	Logic "0" Fault, 54 TTL (Open Coll)
Pin U	Thermal Fault	Output	Logic "0" Fault, 54 TTL (Open Coll)
Pin V	P.S. Fault	Output	Logic "0" Fault, 54 TTL (Open Coll)
Pin W	Spare	<u> </u>	
Pin X	Shield Return (Reset)	Input	
Pin Y	Spare	—	
Pin Z	Spare		
Pin a	Spare		
Pin b	Ground (Signal)	Input	
Pin c	Identification Resistor	_	17.8 K \pm 1% to Ground

Litton

Electron Devices

960 Industrial Road San Carlos, California 94070 415 591-8411 PRINTED IN U.S.A. 2.5MJA489

The Model 713 Power Supply is designed for shipboard, airborne, and ground-based military use. It drives many of Litton's pulsed helix traveling wave tubes at duty cycles up to 4%. It has been optimized for TWT's which possess the following characteristics:

- Minimum power output of 1 kW peak
- Octave-plus bandwidths within the range of 1 to 18 GHz for ECM useage or optimized narrow bandwidths for low noise radar applications
- Gains from 35 to 60 dB

State-of-the-art components —IC's, MOS FET's, and ferrite magnetics — provide a very fast modulator and enhance overall performance.

The power supply is usually supplied fully integrated with an associated TWT on a single conduction-cooled baseplate, thereby forming a self-contained pulsed microwave amplifier.

Both power supply and associated TWT are designed for complete control from a remote location. Monitoring outputs provided include control status signals, TWT voltage and current signals, and a number of diagnostic test point signals.

An accompanying manual provides complete instructions for installing, operating and maintaining the amplifier.

Automatic Fault Protection

TWT Power is automatically removed to prevent damage from:

- Excess average helix current
- TWT arcing (Excess peak beam current)
- Over duty (Excess average beam current)
- Line voltage too high or too low
- Logic voltage dropout
- Overheated TWT
- · Overheated power supply
- Power converter over current
- Excessive VSWR (A standard option)

Monitoring Signals

- Beam current: 1 volt/ampere, 1M-ohm load
- Cathode voltage: 1 volt/kilovolt, 10M-ohm load
- Helix current average: 0.1 volt/milliampere, 1 M-ohm load
- Fault and status signals: (Each of these is a two-state output from a Type 7830 differential line driver. See pin listing for Connector J2)
- Line fault
- Power supply internal fault
- Excessive VSWR
- Excessive helix current
- TWT over temperature
- Power supply over temperature

Electron Devices

Litton

Specifications

Input

RF input to TWT, choice of:

1. Continuous wave (CW) or

2. Pulse of width desired at TWT RF output

Video input pulse to modulator:

- A pulse with a rise and fall time less than 30 ns to turn the TWT on and off
- Standard input, TTL: Input level to hold TWT on: +2.4 v into 50 ohms Input level to hold TWT off: +0.8 v into 50 ohms
- Optional TTL differential input
- Pulse width: 200 ns minimum, 30 microsecs maximum

Output of TWT

RF power, frequency and gain are determined by the TWT used.

Maximum duty cycle 4%
Maximum pulse width 30 microseconds
Pulse repetition frequency 100 kHz maximum
Pulse rate jitter Less than 2 ns
RF rise time
RF fall time70 ns maximum
Delay from leading edge of input video pulse
to full RF out65 ns
Delay from trailing edge of input video pulse
to full RF cutoff 110 ns
Maximum spurious FM 60 dB below carrier
PRF synchronized and measured in a 100 Hz bandwidth
Lower FM noise values are available on special order

Output of Power Supply

650 W
to 11.5 kV
ent range)
50 to 70%
maximum
maximum
0 to 175 V
maximum
NT delay)
minus 1%
maximum

Monitoring Indicator

Cumulative time heater on000 to 999 hours Auxillary Power Supply +15 Volts at 200 mA (see J2)

High-Voltage Connections to TWT, Connector J3 (Rowe 2RMC1615S)

Pin 1	Cathode
Pin 2	No connection
Pin 3	Heater
Pin 4	No connection
Pin 5	Collector
Pin 6	No connection
Pin 7	Grid

Video Input, Connector J4

Coax, SMA Female Jack

VSWR Detector Signal, Connector J5

Coax, SMA Female Jack Trip point is adjustable from 50 to 300 milli-volts. (Z in= 60 ohms)

Low-Voltage Connections to TWT, Connector J6 (Cannon PV70L 10-6S, MS3470)

Pin A	No connection
Pin B	Helix (grounded)
Pin C	No connection
Pin D	TWT thermostat (normally closed)
Pin E	TWT thermostat return (grounded)

Prime Power Input, Connector J1 (MS3120E14-5P)

Pin A, B and C	AC power, 180 to 220 v, 400 Hz, 3 amperes, 3-phase per MIL-STD-704B	
Pin D	No connection	
Pin E	Ground	

Power	consumption	.900	W ma	aximum
Power	factor		0.95	lagging

Control Input, Status Output, and Monitoring Signals, Connector J2 (MS3120E16-26P)

	Description	Source Z	Output Voltage
Pin A	Beam current	_	1 volt/ampere, 1 M ohm load
Pin B	Beam current return	_	
Pin C	Line fault signal	350 ohms	Fault: 13 V nom. Normal: <1 V
Pin D	Line fault signal	350 ohms	Fault: <1 V Normal: 13 V nom.
Pin E	PS fault signal	350 ohms	Fault: 13 V nom. Normal: <1 V
Pin F	PS fault signal	350 ohms	Fault: <1 V Normal: 13 V nom.
Pin H	STANDBY/OPERATE COMMAND Standby Operate	Open circuit (or 8 to 1 the unit to assume the Ground (or less than 2 the unit to assume the	5 V into 10k ohms) commands e STANDBY state 2 Vdc into 10k ohms) commands e OPERATE state
Pin G	Ground Return For Standby/Opera	te Command	
Pin J	+15 Vdc supply, Auxillary	_	+15 Vdc at 200 mA maximum
Pin K	Ground return for +15 Vdc	_	Ground level
Pin L	VSWR signal	350 ohms	Excess: 13 V nom. Normal: <1 V
Pin M	VSWR signal	350 ohms	Excess: <1 V Normal: 13 V nom.
Pin N	Standby signal	350 ohms	On: 13 V nom. Off: <1 V
Pin P	Standby signal	350 ohms	On: <1V Off: 13 V nom.
Pin R	Operate signal	350 ohms	On: 13 V nom. Off: <1 V
Pin S	Operate signal	350 ohms	On: <1 V Off: 13 V nom.
Pin T	Helix current signal	350 ohms	Excess: 13 V nom. Normal: <1 V
Pin U	Helix current signal	350 ohms	Excess: <1 V Normal: 13 V nom.
Pin V	TWT hot signal	350 ohms	Hot: 13 V nom. Normal: <1 V
Pin W	TWT hot signal	350 ohms	Hot: <1 V Normal: 13 V nom.
Pin X	PS hot signal	350 ohms	Hot: 13 V nom. Normal: <1 V
Pin Y	PS hot signal	350 ohms	Hot: <1 V Normal: 13 V nom.
Pin Z	Average helix current monitor	-	0.1 volt per milliampere, into 1 meg ohm
Pin a	Ground return, Avg. Hx monitor	_	
Pin b	Cathode voltage monitor	_	1 volt per kV, into 250K ohm
Pin c	Ground return, cathode monitor	_	

Environmental Capabilities

Military specifications:
Designed to meet MIL-E-5400 (DOD) and MIL-E-16400 (NAVY).
Operating temperature54 degrees C to +71
degrees C at baseplate
Storage temperature54 degrees C to +85
degrees C
Altitude 50,000 feet minimum
Humidity
Vibration 10 g to 2000 Hz
Shock

Mechanical Specifications

Cooling method	Conductive
Weight 24 lbs (11 kg) maximum for power	supply only
Dimensions See out	ine drawing

NOTE: THIS UNIT MEETS THE GERMAN VDE-804 SAFETY STANDARD

2. Tolerances:

Litton

- . Tolerances.
 - .xx = ±.020 (0.51) .xxx = ±.005 (0.127)

Personnel should not be exposed to the microwave energy which may radiate from this device if improperly used or connected. All input and output microwave connections, waveguide flanges and gaskets must be microwave leak proof and properly engaged. Never operate this device without a microwave energy absorbing load attached. Never look into an open waveguide or antenna while this device is energized. This device may produce X-radiation when energized. Operating personnel must be protected by appropriate shielding X-ray caution signs or labels should be

be protected by appropriate sineraing. Array caution signs of labels should be permanently attached to equipment directing operating personnel never to operate this device without X-ray shielding in place.

Specifications and dimensions are subject to change without notice.

Electron Devices

PRINTED IN U.S.A. 2.5MMLD887

M-713

The Model 687 Power Supply is designed to drive Litton's high power ring-loop pulsed traveling wave tubes at duty cycles up to 4%. The unit, as well as its associated TWT, will operate at high altitudes and over a wide range of temperatures.

The power supply is usually supplied fully integrated with an associated TWT on a single conduction-cooled baseplate, thereby forming a self-contained pulsed microwave amplifier. Both power supply and associated TWT are designed for complete control from a remote location. Monitoring outputs provided include control status signals, TWT voltage and current signals, and a number of diagnostic test point signals.

M-687

An accompanying manual provides complete instructions for installing, operating and maintaining the amplifier.

Electron Devices

Specifications

Automatic Fault Protection

Power is automatically removed to prevent damage from: TWT arcing (Excess peak beam and helix current). Excess duty cycle. Line voltage too high or too low. Overvoltage applied to TWT. Undervoltage applied to TWT. Overheated TWT. Overheated TWT. Overheated power supply. Excess average beam current. Excess average helix current.

Input

RF input, to TWT, choice of:

1. Continuous wave (CW) or

2. Pulse of width desired at TWT RF output.

Video input pulse to modulator (J5). A pulse with a rise and fall time of less than 100 ns to turn

the TWT on and off.

Input level to hold

TWT on+5v to +15v into 50 ohms. Input level to hold

TWT off less than +0.8v into 50 ohms. Pulse width: Minimum 200 ns

Output of TWT

Pulse power See "Table of Standard
Power Supplies and Associated TWT's"
Duty cycle See "Table of Standard
Power Supplies and Associated TWT's"
Pulse repetition frequency (PRF):
50 kHz maximum is standard. (Higher on special order)
Pulse rate jitter 2 ns maximum.
RF rise time
RF fall time150 ns maximum.
Delay from leading edge of modulator
pulse to full RF out 150 ns max.
Delay from trailing edge of modulator
pulse to full RF cutoff 180 ns max.
Maximum spurious FM
are available on special order.

Output of Power Supply

Maximum output power	11	00	W.
Helix voltage:			
Models 687-00 and 687-01		11	kv.
Models 687-02 and 687-03		15	kv.

Collector voltage as percent of helix voltage: 66% min, 70% typical, 80% max. (Depending on associated TWT)
Helix current 600 mA typical, 900 mA max.
Collector current
Grid voltage 60 v min., 130 v typical, 240 v max.
Grid bias90 v min., -125 v typical, -150 v max.
Grid current
Modulator output rise time70 ns typical,
Modulator output fall time
Acquisition time
Heater voltage AC/DC 6.1 v min., 6.3 v typical,
6.5 v max. regulated \pm 1.5%.
Heater current 3.5 A max.

Monitoring Indicator

Cumulative time heater on 0000 to 9999 hours.

Prime Power Requirement

Line power: (MS3470L14-5 PN)
Models 687-01, -02 and -03, J1: 200 v, 400 Hz,
(200 v line to line) per MIL-STD-704A.
3-phase, 4-wire, pins A,B,C
pin D neutral, pin E ground.
Model 687-00, JO 115 v, 50 to 400 Hz,
3-phase, 3-wire, delta, pins A,B,C,
pin D N/C, pin E ground.
Power consumption 1300 W max.
Power factor: 0.9 typical.

Environmental Capabilities

Military specifications:
Designed to meet MIL-E-5400 (DOD) and
MIL-E-16400 (NAVY)
Operating temperature
to +85 degrees C.
Storage temperature
to +95 degrees C.
Altitude
Humidity
Vibration 5g, 5 to 2000 Hz.
Shock 20g for 11 milliseconds
(half sine wave).

Mechanical Specifications

Cooling method Conduct	tion
Weight:	
Power supply alone	lbs.
Associated TWT 5 to 15	lbs.
DimensionsSee outline draw	ing.

M-687-00, -01, -02, -03 Control Input and Status Output Signals, Connector J2, (MS 3476L16-26SN) Control inputs required

Pin AStandbyOpen circuit (or 8 to 15 Vdc into 600 ohms) commands the unit to assume the STANDBY state.OperateGround (or less than 2 Vdc into 600 ohms) commands the unit to assume the OPERATE state.

Status output signals which appear

	State	Source Z	Output Voltage	Load Current
Pin B	Operate	15 ohms	< 2 V	Max. sink I = 100 mA
	Non-Operate	15k ohms	15 V nominal	Max. source I = 10 mA
Pin C	Standby	15 ohms	< 2 V	Max. sink I = 100 mA
	Non-Standby	15k ohms	15 V nominal	Max. source I = 10 mA
Pin D	Fault	15 ohms	< 2 V nominal	Max. sink l = 100 mA
	No Fault	15k ohms	15 V nominal	Max. source l = 10 mA
Pin E	Prime Power On Prime Power Off	1M ohms 1M ohms	15 V nominal 0 V	

Models 687-00, -01, -03. Monitoring and Test Signals, Connector J3. (No connection is required for operation,) (MS 3476L20-41SN)

	Description	Source Z	Output Voltage
Pin A	Beam current		1 volt/ampere into 1M ohms
Pin B	Helix current		1 volt/ampere into 1M ohms
Pin C	Cathode voltage		1 volt/kilovolt into 10M ohms
Pin D	Fault signal	1M ohms	Fault: >4 V No fault: <1 V
Pin E	+DC bus monitor	1M ohms	Approx. +250 V with respect to Pin a.
Pin a	–DC bus monitor	1M ohms	Approx250 V with respect to Pin E.
Pin G	Line voltage Too high or too low 5k ohms Clock pulse Normal 5k ohms <1 V		Clock pulses >8 V peak (Random freq. <1 V 1 kHz to 20 kHz)
Pin H	Regulated +15 Vdc	1M ohms	+15 Vdc nominal
Pin J	Delayed +15 Vdc	1M ohms	+14 Vdc nominal
Pin K	Unregulated +20 Vdc	1M ohms	+20 Vdc nominal
Pin M	TWT hot signal. Overheated Normal	1.5k ohms Zero ohms	15 V Ground
Pin N	TWT over/under voltage.	1M ohms	Over/under voltage: >8 V Normal: <1 V
Pin T	HV inverter stop pulse Fault (or Standby) Normal	1M ohms 1M ohms	<5 V (Shuts down HV inverter) >13 V
Pin U	Inverter switch base current.		1 volt/ampere into 1M ohms (Typical current is 4 amperes).
Pin V	Inverter primary current		1 volt/ampere into 1M ohms (Typical current is 18 amperes).
Pin k	Clock signal	5k ohms	13 V peak (27 kHz square wave)
Pin m	Clock signal return.		

Model 687-02

Monitoring and Test Signals, Connector J3. (No connection is required for operation, MS 3470L20-41SN)

	Description	Source Z	Output Voltage
Pin A	Beam current		1 volt/ampere into 1M ohms
Pin B	Helix current		1 volt/ampere into 1M ohms
Pin C	Cathode voltage		1 volt/kilovolt into 10M ohms
Pin D	Line voltage monitor Too high or too low Normal	100 ohms Infinite	<2 V (Sink current is 20 mA) Open drain
Pin E	+DC bus monitor	1M ohms	Approx. +250 V with respect to Pin a.
Pin a	–DC bus monitor	1M ohms	Approx250 V with respect to Pin E.
Pin G	Hot TWT or PS Overheated Normal	100 ohms Infinite	<2 V (Sink current is 20 mA) Open Drain
Pin H	Regulated +15 Vdc	1M ohm	+15 Vdc nominal
Pin J	Delayed +15 Vdc	1M ohm	+14 Vdc nominal
Pin K	Beam current Excess average Normal	100 ohms Infinite	<2 V (Sink current is 20 mA) Open drain
Pin M	TWT hot signal. Overheated Normal	1.5k V Zero ohms	15 V Ground
Pin N	TWT over/under voltage.	1M ohms	Over/under voltage: >8 V Normal: <1 V
Pin T	TWT arcing Arcing Normal	100 ohms Infinite	<2 V (Sink current is 20 mA) Open drain
Pin U	Inverter switch base current.		1 volt/ampere into 1M ohms (Typical current is 4 amperes)
Pin V	Inverter primary current.		1 volt/ampere into 1M ohms (Typical current is 18 amperes)
Pin k	Clock signal	5k ohms	+13 V peak (27 kHz square wave)

M-687-00, -01, -02, -03

TWT Connectors	Description	Function
J4	SMA-F	TWT Thermostat (normally closed, Blue)
J6	#6-32 Stud	TWT Helix (grounded, Black)
J7	LGH1I (Amp)	TWT Collector (Red)
J8	LGH1I (Amp)	TWT Cathode (Yellow)
J9	LGH1I (Amp)	TWT Grid (Green)
J10	LGH1I (Amp)	TWT Heater (Brown)

M-687-00, -01, -02, -03

Video Input Pulse, J5 (SMA-F) See Specifications, Video Input.

Power		Associated TWT			
Supply Model Number	TWT Model No.	Frequency Range	Power Output	Gain	Maximum Duty Cycle at Rated Power
M687-01	L-5570-51	1.5 to 1.35 GHz	6 kW	50 dB	4%
M687-02	L-5600-52	2.7 to 3.2 GHz	10 kW	45 dB	2%
M687-01	L-5366-50	3.0 to 3.5 GHz	3 kW	60 dB	3%
M687-02*	L-5679-55*	3.2 to 3.7 GHz	10 kW	46 dB	2.5%
M687-02	L-5591-50	8.9 to 9.5 GHz	6 kW	60 dB	2%
M687-02	L-5581-51	8.9 to 9.4 GHz	8 kW	60 dB	2%
M687-02	L-5601-50	9.5 to 10.0 GHz	8 kW	60 dB	2%
M687-01	L-5785-50	16.0 to 16.5 GHz	3 kW	60 dB	3%

Standard Power Supplies and Associated TWT's

*TWT is liquid cooled. A liquid cooled baseplate for the TWTA assembly can be provided at additional cost.

NOTE: Other TWT and power supply combinations are available on special order.

Personnel should not be exposed to the microwave energy which may radiate from this device if improperly used or connected. All input and output microwave connections, waveguide flanges and gaskets must be microwave leak proof and properly engaged. Never operate this device without a microwave energy absorbing load attached. Never look into an open waveguide or antenna while this device is energized.

This device may produce X-radiation when energized. Operating personnel must be protected by appropriate shielding. X-ray caution signs or labels should be permanently attached to equipment directing operating personnel never to operate this device without X-ray shielding in place.

.150 MAX

Litton

Electron Devices

0 1 Π Đ ۲ • 1.100 ±.010 .250 ±.050 .062 REF 6.225 ±.010 .325 ±.050 11.350 ±.010 5.100 ±.250 BASE PLATE 16.476 ±.010 / .203 ± .015 DIA. THRU .375 DIA REF X.062 DP REF COVER CUTOUT FOR SCREW HEAD CLEARANCE 8 PLACES

Litton Precision Products Int. Inc. 6 First Avenue, Globe Park,

Marlow, Bucks. SL7 1YA Tel: Marlow (06284) 6060 Telex: 847548

The Model M-720 Power Supply is a lightweight, compact, low noise power supply designed for use in military systems. It is capable of driving Litton's L-2307 Traveling Wave Tube at duty cycles up to 30% with maximum spurious FM sideband levels less than -70 dBc.

The power supply is usually supplied fully integrated with an associated TWT, thereby forming a self-contained pulsed microwave amplifier.

The power supply and associated TWT are designed for complete control from a remote location. Monitoring outputs provided include control status signals, TWT voltage and current signals, and a fault warning signal.

An accompanying manual provides complete instructions for installing operating and maintaining the amplifier.

Automatic Fault Protection

Fault protection is provided to prevent damage from:

- TWT arcing (Excess peak helix current).
- Over duty (Excess average beam current).
- · Excess pulse width.
- · Excess average helix current.
- · Excess peak beam current.
- · Excess cathode voltage.
- · Primary 28 Vdc voltage too high or too low.
- Overheated TWT.
- Overheated power supply.

Analog Monitoring Signals

- · Cathode voltage.
- Helix current.

Status Signals

- Standby state.
- · Operate state.
- Fault state.

Electron Devices

Litton

Specifications

Power Supply Outputs

RF Modulation and Sync Inputs

RF input to TWT:

A continuous wave or a pulse of width desired at output. Video input to pulse modulator (Connector J4):

TWT on TTL high, differential input.
TWT off TTL low, differential input.
Pulse width 20 microsec. max., 200 ns min.
Video input rise and fall times 10 ns maximum
Duty cycle
Pulse repetition frequency 175 kHz maximum
Pulse separation 200 ns minimum

Sync Input (Connector J5)

Frequency Range	140 to 180 kHz
Amplitude	TTL levels, differential input
Pulse Width	300 ns minimum
	600 ns maximum

TWT Outputs

Frequency range [*]
Duty cycle*
Pulse repetition frequency 175 kHz maximum
Time jitter 2 ns maximum
RF rise time 15 ns maximum
RF fall time 20 ns maximum
Delay from leading edge of video input pulse
to full RF out 175 ns
Delay from trailing edge of video input pulse
to full RF cutoff 175 ns

Power Requirements, Connector J1

Pins 1, 2, 6	. +28 Vdc per MIL-STD-704B (+20 Vdc min)
Pins 4, 5, 9	Ground return
Pins 3, 7, 8	No connection
Power cons	umption
	and 30% duty cycle

*Power output can be optimized to 100 watts peak over selected portions of the band, but duty cycle at 100 watts is limited to 10%.

Control, Status, and Monitoring Signals, Connector J2 Control inputs

Status	s output s	gnals
Pin 1	Standby/	operate command ground return.
	Operate:	Ground (or TTL Logic 0) commands the unit to assume the OPERATE state.
Pin 3	Standby/ Standby:	Open circuit (or + 12 V) commands the

Description		Output Voltage
Pin 8	Fault indicator	
	On	12 V minimum
	Off	0.8 V maximum
Pin 4	Standby indicator	
	On	12 V minimum
	Off	0.8 V maximum
Pin 9	Operate indicator	
	On	12 V minimum
	Off	0.8 V maximum
Pin 5	Prime Power On Indicator	
	On	12 V minimum
	Off	0.8 V maximum

Monitoring signals

Pin 2	Cathode voltage: 1 volt/kilovolt into 20k ohms min
Pin 6	Helix current: 100 volts/ampere into 30k ohms min
Pin 7	Not connected

Environmental Capabilities

Operating temperature40 degrees C to
+ 70 degrees C
Storage temperature
+ 105 degrees C
Altitude 40,000 feet maximum
Humidity95% relative humidity, including condensation
Vibration
Shock 15 g, 11 ms

Mechanical Specifications

Cooling	Cooling									Conduction cooled baseplate				
Weight														7 lbs maximum without TWT

Personnel should not be exposed to the microwave energy which may radiate from this device if improperly used or connected. All input and output microwave connections, waveguide flanges and gaskets must be microwave leak proof and properly engaged. Never operate this device without a microwave energy absorbing load attached. Never look into an open waveguide or antenna while this device is energized.

Summary of Connector Functions

Connector	Туре	Function
J1	Amp 842920-9	See "Power Requirements."
J2	Amp 842925-9	See "Control, Status, and Monitoring Signals."
J3	SMC plug, straight	TWT thermal overload. Normally closed. Opens at 140 degrees C. Isolated.
J4	BNC Twinax Amphenol 31-2225	See "Specifications, Video input pulse."
J5	BNC Twinax Amphenol 31-2225	See "Specifications, Sync input pulse"
J12	Amp 867471-3	To TWT collectors.
J15	Amp 867471-3	To TWT gun end.

Sales Offices

Main marketing offices and applications engineering services are located at 960 Industrial Road, San Carlos, California 94070. Phone (415) 591-8411 or TWX 910-376-4900. Regional Marketing Offices are listed below:

EAST 288 Littleton Road Suite 32 Westford, Massachusetts 01886 (617) 692-6220 DISTRICT OF COLUMBIA 1755 Jefferson Davis Highway Suite 510 Arlington, Virginia 22202 (703) 920-4100 MID-ATLANTIC 385 Morris Avenue 3rd Floor Springfield, New Jersey 07081-0516 (201) 379-3131 SOUTHEAST 1600 Watson Blvd. Suite 6 Warner Robins, Georgia 31093 (912) 923-3397 MIDWEST 4130 Linden Avenue Suite 100 Dayton, Ohio 45432 (513) 258-1243 WEST 2659 Townsgate Rd. Suite 101 Westlake Village, California 91361 (818) 889-4903 SOUTHWEST 840 E. Central Parkway Suite 120 Plano, Texas 75074 (214) 881-0822

Sales outside the United States are handled through the following companies: WESTREX Litton-Westrex CPO Box 760 Tokyo, Japan (81) 3-211-6791 LITTON PRECISION PRODUCTS INTERNATIONAL: FRANCE 58 Rue Pottier F-78150 Le Chesnay (33) 1-3955.21.04 WEST GERMANY **Oberfohringer Strasse 8** D-8000 Munich 80 (49)89-98.05.47

ITALY Viale Fulvio Testi, 126 20092 Cinisello Balsamo Milano 1 (39) 02-2440421 ENGLAND 6 First Avenue Globe Park, Marlow Bucks SL7 1YA (44) 62-84-6060 SWEDEN/NORWAY/DENMARK P.O. Box 30095 S-104 25 Stockholm (46)8-132030 THE NETHERLANDS Van Utrechtweg 25 2921 LN Krimpen a.d. Yssel (31)1807-18555 SWITZERLAND Gubelstrasse 28 CH-8050 Zurich (41) 1-312 35 44

960 Industrial Road San Carlos, California 94070 (415) 591-8411 PRINTED IN U.S.A. 2.5MJA788

M-755 TWT Power Supply

Features:

Compact and Lightweight Low Noise, High Performance High Reliability Operates a Wide Variety of TWTs 1600 Watts of Output Power

The M-755 is a very lightweight, compact and high performance TWT power supply designed specifically for medium-power military radar applications.

It is capable of operating TWTs with up to 500 watts of average RF output power.

Figure 1 shows the 8kW, 5% duty X-band L-5982 TWT. The M-755 can be configured to operate in pulse or CW mode and is suitable for ECM, military communications, and other applications as well as radar.

State-Of-The-Art Power Electronics

- High frequency zero-current switching
- Independent mag-amp control of the filament supply
- A high speed and low noise floating-deck modulator
- A linear post-regulator for extremely low helix ripple voltage
- Modern, high performance components used throughout: high-speed power MOSFETs and high voltage diodes, lightweight high voltage capacitors, high frequency power magnetics, advanced power integrated circuits.

High-Reliability, Long-Life Design

- Component derating generally meets the requirements of U.S. government documents *NAVMAT P-4855-1* and *AS-4613*.
- Junction temperatures maintained to less than 110°C.
- Relatively low voltage stress in the high voltage section.

Advanced Packaging Techniques

- Surface-Mount Technology (SMT)
- Hybrid Power Electronics
- Proprietary Potting Compounds
- Modular Design

Special Features

- Serial data link for transmission of status information with minimal wiring.
- Heater voltage can be reduced during standby to extend TWT life.
- Rapid recovery to full power output after momentary loss of prime power.
- Optional +12 Vdc output available for driver SSA or other purposes.

Litton M-755 Power Supply

Electrical Performance

Cathode Voltage	. 13 to 16 kV, 2 kV adjustment range (Can be adjusted for lower voltages)
Collector Voltages	. Can modified for different voltages or TWTs with single stage or three stage collectors
Collector 1 Voltage	. 70% of Ε _Κ
Collector 2 Voltage	. 40% of E _K
Heater	. Settable from 6.0 to 6.6 Vdc
	3 amps max.
	Can be programmed to a lower voltage during standby, extending TWT life.
Warm-Up Timer	. 180 seconds maximum upon first applying prime power
	In case of temporary loss of prime power, warm-up time reduced proportionately

Modulator	Grid or Focus Electrode types available Voltages shown below are typical, other ranges available.
Intercepting Grid	On-bias settable from +80 to +110 volts Off-bias of -125 volts
Shadow Grid	On-bias settable from +275 to +300 volts Off-bias of -240 volts
Focus Electrode	On-bias settable from -3 to -30 volts Off-bias of -1000 volts
Modulator Waveform	125 nsec acquisition time
	40 nsec voltage rise time (10 nsec typ. for RF)
	Pulse width from 100 nsec to 50 µsec PRF from CW to 100 kHz (25 kHz max. for focus electrodes)
Input Prime Power	270Vdc or 3-phase, 200V _{LL} , 400 Hz per MIL- STD-704E 1900 watts input, 0.9 power factor
Output Power	1600 watts to the TWT +12 Volts, 0.8 amps available for driver SSA or other purposes

Controls, Indicators, and Monitors

The following interface signals are available on the M-755. Typical applications use a subset of these signals and Litton can configure the interface per customer requirements. The control and indicator signals are available as TTL or as differential line driver/receiver signals.

Controls

Standby / Operate (HV On / Off) Pulse (Modulator On / Off) Fault Reset PRF Synchronization Pre-Trigger (Blanking) Battle Override

Indicators

High Voltage On Operate Standby Warm-Up Fault Serial Link (see next page)

Monitors

Cathode Voltage	(1000:1)
Beam Current	(1 Volt/Amp)
Helix Current	(1 Volt/Amp)
Heater Voltage	(1:1)
Heater Current	(1 Volt/Amp)
Grid Voltage	(100:1)

Mechanical

Cooling	Conduction to mounting surface
Weight	
Dimensions	14.25" long x 6" wide x 5" high 428 ci
	(362mm x 153mm x 127mm) 7034 cc

Environmental

Temperature	55 to +85°C
Altitude	50,000 feet
Vibration	ms, 5 to 2000 Hz
Shock	. 30 g's, 11 msec
Humidity Up to 100% includ	ing condensation

Serial Data Link Description

The following serial data is transmitted asynchronously at 9600 bits per second, continuously retransmitting 400 12-bit words. Only Words 1 through 4 contain information. All signals are active high. Bit Word 1 Word 2 Word 3 Word 4 Words 5-400 0 Low Low low low High 1 Low Low High High High 2 Low High Low High High **HVPS** Inverter Heater Over TWT 3 HV Off Indicator High Overcurrent Fault Voltage Fault Overtemperature Warm-Up / Standby Cathode Over Heater Under Heater Under 4 High Indicator Voltage Fault Voltage Fault Current Fault Summary Fault Beam Peak High Voltage Cathode Under 5 High Interlock Fault Indicator Voltage Fault Current Fault **HVPS** Thermal PRF Synchronization Beam Average 6 Excess Duty Fault High Current Fault Fault Fault Prime Power Helix Peak Current **HVPS** Logic Over/Under 7 Battle Override High Over Voltage Fault Fault Voltage Fault Safety **HVPS** Logic Under Low Heater Helix Average Overtemperature High 8 Voltage Disabled Voltage Fault Current Fault Fault 9 Standby Indicator High High Operate High 10 High High High High High 11 High High High High High

Associated TWTs

The M-755 is capable of operating a wide variety of TWTs. Some examples are listed below.

Model	Frequency	Power	Duty Cycle	Model	Frequency	Power	Duty Cycle
L-5827	1.0 - 2.0 GHz	1 kW	4%	L-5819	9.4 - 10.0 GHz	3.6kW	10%
L-6020	2.5 - 8.0 GHz	1kW	7%	L-5813	9.5 - 10.5 GHz	1kW	30%
L-5833	6.5 - 18.0 GHz	1.5kW	6%	L-5785	16.0 - 16.5 GHz	3kW	3%
L-6022	7.5 - 18.0 GHz	1.5kW	6%	L-6019	2.5 - 8.0 GHz	150 Watts	CW
L-5845	8.5 - 9.6 GHz	4kW	8%	L-5918	5.85 - 6.425 GHz	400 Watts	CW
L-5850	8.5 - 10.5 GHz	2kW	6%	L-5832	6.5 - 18.0 GHz	200 Watts	CW
L-5982	9.0 - 10.0 GHz	8kW	5%	L-6021	7.5 - 18.0 GHz	150 Watts	CW

Litton Electron Devices 960 Industrial Road, San Carlos, CA 94070 TEL: 650-591-8411 FAX: 650-508-1956

Fault Protection Matrix

Fault Condition	RF Off	HV Off	Auto Reset, Latches After 3 Tries	Auto Reset After Fault Clears	External Reset	Cycles Back To Warm-Up
TWT Arc	Х	Х	Х		Х	
Excess Peak Helix Current	Х	Х	Х		Х	
Excess Average Helix Current	Х	Х	Х		Х	
Excess Peak Beam Current	Х	Х	X		Х	
Excess Average Beam Current	Х	Х	Х		Х	
Cathode Over-Voltage	Х	Х	Х		Х	
Cathode Under-Voltage	Х			Х		
Heater Over-Current	Х	Х		Х		Х
Heater Under-Current	Х	Х		Х		Х
Heater Over-Voltage	Х	Х	Х		Х	Х
Heater Under-Voltage	Х	Х		Х		Х
Prime Power Over-Voltage	Х	Х		Х		
Prime Power Under-Voltage	Х	Х		Х		
Prime Power Over-Current	Х	Х	Х		Х	
TWT Over-Temperature	Х	Х		Х		
Power Supply Over-Temperature	Х	Х		Х		
HV Connector Interlock	Х	Х			Х	Х
Internal Power Supply Voltage	Х	Х		Х		
Excess Duty Cycle	Х			Х		
Excess Pulse Width*	Х			Х		

* TWTA remains operational, pulses truncated.

Figure 1. The M-755 is shown above with the L-5982 TWT, forming a compact 8kW, 5% duty X-band TWTA.

Phase Noise

The M-755 has been optimized for modern radar systems which require a low phase noise TWTA. The primary contributor to phase noise in TWTAs is ripple voltage on the TWT cathode and grid. In addition to very accurate regulation and significant filtering, the M-755 has two phase noise reduction techniques which can be

PRF Synchronization

With PRF synchronization the ripple voltage is not reduced, rather it is controlled in frequency such that the phase noise effects of the ripple are effectively eliminated. This technique requires an input signal with a frequency of 380 ± 10 kHz and an integer multiple of the pulse frequency (PRF). This signal is used to synchronize the power supply switching frequency, and hence the output ripple frequency, of the M-755. As can be seen by the pictorial example above, the phase noise spectrum generated by the ripple voltage is masked by the spectrum generated by the output pulse. utilized to achieve ultra-low noise: PRF synchronization and blanking (pre-trigger). Depending on the TWT and the phase noise reduction technique employed, the M-755 can achieve noise levels of -90 dBc/Hz with a maximum spur of -70 dBc at 2400 Hz (six times the line frequency).

Blanking (Pre-Trigger)

The blanking technique eliminates ripple voltage during the pulse by turning the high voltage power processing circuits off during the pulse. This is best achieved with a pre-trigger input which turns the power supply off slightly before the application of the pulse, but for wide pulse width applications this input may be omitted. The high voltage outputs are supported by high voltage capacitors during the pulse. This technique, illustrated above, works best with relatively long pulse widths and low pulse frequencies.

Litton

Electron Devices

960 Industrial Road, San Carlos, CA 94070 TEL: 650-591-8411 FAX: 650-508-1956